new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

Causal Judge Evaluation: Calibrated Surrogate Metrics for LLM Systems

LLM-as-judge evaluation has become the de facto standard for scaling model assessment, but the practice is statistically unsound: uncalibrated scores can invert preferences, naive confidence intervals on uncalibrated scores achieve near-0% coverage, and importance-weighted estimators collapse under limited overlap despite high effective sample size (ESS). We introduce Causal Judge Evaluation (CJE), a framework that fixes all three failures. On n=4,961 Chatbot Arena prompts (after filtering from 5k), CJE achieves 99% pairwise ranking accuracy at full sample size (94% averaged across configurations), matching oracle quality, at 14x lower cost (for ranking 5 policies) by calibrating a 16x cheaper judge on just 5% oracle labels (~250 labels). CJE combines three components: (i) AutoCal-R, reward calibration via mean-preserving isotonic regression; (ii) SIMCal-W, weight stabilization via stacking of S-monotone candidates; and (iii) Oracle-Uncertainty Aware (OUA) inference that propagates calibration uncertainty into confidence intervals. We formalize the Coverage-Limited Efficiency (CLE) diagnostic, which explains why IPS-style estimators fail even when ESS exceeds 90%: the logger rarely visits regions where target policies concentrate. Key findings: SNIPS inverts rankings even with reward calibration (38% pairwise, negative Kendall's tau) due to weight instability; calibrated IPS remains near-random (47%) despite weight stabilization, consistent with CLE; OUA improves coverage from near-0% to ~86% (Direct) and ~96% (stacked-DR), where naive intervals severely under-cover.

  • 1 authors
·
Dec 11, 2025 2

MIST: Mutual Information Via Supervised Training

We propose a fully data-driven approach to designing mutual information (MI) estimators. Since any MI estimator is a function of the observed sample from two random variables, we parameterize this function with a neural network (MIST) and train it end-to-end to predict MI values. Training is performed on a large meta-dataset of 625,000 synthetic joint distributions with known ground-truth MI. To handle variable sample sizes and dimensions, we employ a two-dimensional attention scheme ensuring permutation invariance across input samples. To quantify uncertainty, we optimize a quantile regression loss, enabling the estimator to approximate the sampling distribution of MI rather than return a single point estimate. This research program departs from prior work by taking a fully empirical route, trading universal theoretical guarantees for flexibility and efficiency. Empirically, the learned estimators largely outperform classical baselines across sample sizes and dimensions, including on joint distributions unseen during training. The resulting quantile-based intervals are well-calibrated and more reliable than bootstrap-based confidence intervals, while inference is orders of magnitude faster than existing neural baselines. Beyond immediate empirical gains, this framework yields trainable, fully differentiable estimators that can be embedded into larger learning pipelines. Moreover, exploiting MI's invariance to invertible transformations, meta-datasets can be adapted to arbitrary data modalities via normalizing flows, enabling flexible training for diverse target meta-distributions.

  • 5 authors
·
Nov 24, 2025 2

Experts Don't Cheat: Learning What You Don't Know By Predicting Pairs

Identifying how much a model {p}_{theta}(Y|X) knows about the stochastic real-world process p(Y|X) it was trained on is important to ensure it avoids producing incorrect or "hallucinated" answers or taking unsafe actions. But this is difficult for generative models because probabilistic predictions do not distinguish between per-response noise (aleatoric uncertainty) and lack of knowledge about the process (epistemic uncertainty), and existing epistemic uncertainty quantification techniques tend to be overconfident when the model underfits. We propose a general strategy for teaching a model to both approximate p(Y|X) and also estimate the remaining gaps between {p}_{theta}(Y|X) and p(Y|X): train it to predict pairs of independent responses drawn from the true conditional distribution, allow it to "cheat" by observing one response while predicting the other, then measure how much it cheats. Remarkably, we prove that being good at cheating (i.e. cheating whenever it improves your prediction) is equivalent to being second-order calibrated, a principled extension of ordinary calibration that allows us to construct provably-correct frequentist confidence intervals for p(Y|X) and detect incorrect responses with high probability. We demonstrate empirically that our approach accurately estimates how much models don't know across ambiguous image classification, (synthetic) language modeling, and partially-observable navigation tasks, outperforming existing techniques.

  • 4 authors
·
Feb 13, 2024

QuCo-RAG: Quantifying Uncertainty from the Pre-training Corpus for Dynamic Retrieval-Augmented Generation

Dynamic Retrieval-Augmented Generation adaptively determines when to retrieve during generation to mitigate hallucinations in large language models (LLMs). However, existing methods rely on model-internal signals (e.g., logits, entropy), which are fundamentally unreliable because LLMs are typically ill-calibrated and often exhibit high confidence in erroneous outputs. We propose QuCo-RAG, which shifts from subjective confidence to objective statistics computed from pre-training data. Our method quantifies uncertainty through two stages: (1) before generation, we identify low-frequency entities indicating long-tail knowledge gaps; (2) during generation, we verify entity co-occurrence in the pre-training corpus, where zero co-occurrence often signals hallucination risk. Both stages leverage Infini-gram for millisecond-latency queries over 4 trillion tokens, triggering retrieval when uncertainty is high. Experiments on multi-hop QA benchmarks show QuCo-RAG achieves EM gains of 5--12 points over state-of-the-art baselines with OLMo-2 models, and transfers effectively to models with undisclosed pre-training data (Llama, Qwen, GPT), improving EM by up to 14 points. Domain generalization on biomedical QA further validates the robustness of our paradigm. These results establish corpus-grounded verification as a principled, practically model-agnostic paradigm for dynamic RAG. Our code is publicly available at https://github.com/ZhishanQ/QuCo-RAG.

  • 4 authors
·
Dec 22, 2025 2