new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 12

UCF: Uncovering Common Features for Generalizable Deepfake Detection

Deepfake detection remains a challenging task due to the difficulty of generalizing to new types of forgeries. This problem primarily stems from the overfitting of existing detection methods to forgery-irrelevant features and method-specific patterns. The latter is often ignored by previous works. This paper presents a novel approach to address the two types of overfitting issues by uncovering common forgery features. Specifically, we first propose a disentanglement framework that decomposes image information into three distinct components: forgery-irrelevant, method-specific forgery, and common forgery features. To ensure the decoupling of method-specific and common forgery features, a multi-task learning strategy is employed, including a multi-class classification that predicts the category of the forgery method and a binary classification that distinguishes the real from the fake. Additionally, a conditional decoder is designed to utilize forgery features as a condition along with forgery-irrelevant features to generate reconstructed images. Furthermore, a contrastive regularization technique is proposed to encourage the disentanglement of the common and specific forgery features. Ultimately, we only utilize the common forgery features for the purpose of generalizable deepfake detection. Extensive evaluations demonstrate that our framework can perform superior generalization than current state-of-the-art methods.

  • 4 authors
·
Apr 27, 2023

On the Insecurity of Keystroke-Based AI Authorship Detection: Timing-Forgery Attacks Against Motor-Signal Verification

Recent proposals advocate using keystroke timing signals, specifically the coefficient of variation (δ) of inter-keystroke intervals, to distinguish human-composed text from AI-generated content. We demonstrate that this class of defenses is insecure against two practical attack classes: the copy-type attack, in which a human transcribes LLM-generated text producing authentic motor signals, and timing-forgery attacks, in which automated agents sample inter-keystroke intervals from empirical human distributions. Using 13,000 sessions from the SBU corpus and three timing-forgery variants (histogram sampling, statistical impersonation, and generative LSTM), we show all attacks achieve ge99.8% evasion rates against five classifiers. While detectors achieve AUC=1.000 against fully-automated injection, they classify ge99.8% of attack samples as human with mean confidence ge0.993. We formalize a non-identifiability result: when the detector observes only timing, the mutual information between features and content provenance is zero for copy-type attacks. Although composition and transcription produce statistically distinguishable motor patterns (Cohen's d=1.28), both yield δ values 2-4x above detection thresholds, rendering the distinction security-irrelevant. These systems confirm a human operated the keyboard, but not whether that human originated the text. Securing provenance requires architectures that bind the writing process to semantic content.

  • 1 authors
·
Jan 23