new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 1

Directional Diffusion-Style Code Editing Pre-training

Code pre-trained models have shown promising effectiveness in various software engineering tasks. Among these tasks, many tasks are related to software evolution and/or code editing. However, existing code pre-trained models often overlook the real-world code editing data and the evolutionary nature of the editing process. In this paper, to simulate the step-by-step code editing process of human developers, we propose DivoT5, a pre-trained model based on directional diffusion at the data level. In DivoT5, we adopt two categories of pre-training tasks. The first category is mask and denoising tasks augmented with a diffusion direction representing code evolution. That is, we first apply a noising process to the code snippets before evolution, and then ask the pre-training process to restore the snippets with noise into the code snippets after evolution. The second category is tasks aiming to reinforce the evolutionary direction. That is, we first generate various intermediate versions for each pair of snippets before and after evolution, and then ask the pre-training process to transform the intermediate versions into the snippet after evolution for each pair. We evaluate DivoT5 for two code-editing scenarios and one non-editing scenario using five downstream tasks. Given each downstream task, we fine-tune the pre-trained DivoT5 to evaluate its effectiveness. Our experimental results show that DivoT5 achieves state-of-the-art (SOTA) performance on most tasks in comparison to models of the same scale (220M), large scale (770M) models in fine-tuning, and billion-scale (6.7B, 8B, ChatGPT) models in few-shot settings. For one code-editing task (i.e., automated code review), DivoT5 pre-trained on top of CodeT5-small (60M) can even outperform CodeT5-base (220M) and other pre-trained models with 220M parameters except for DivoT5 pre-trained on top of CodeT5-base (220M).

  • 9 authors
·
Jan 21, 2025

MiniMax-M1: Scaling Test-Time Compute Efficiently with Lightning Attention

We introduce MiniMax-M1, the world's first open-weight, large-scale hybrid-attention reasoning model. MiniMax-M1 is powered by a hybrid Mixture-of-Experts (MoE) architecture combined with a lightning attention mechanism. The model is developed based on our previous MiniMax-Text-01 model, which contains a total of 456 billion parameters with 45.9 billion parameters activated per token. The M1 model natively supports a context length of 1 million tokens, 8x the context size of DeepSeek R1. Furthermore, the lightning attention mechanism in MiniMax-M1 enables efficient scaling of test-time compute. These properties make M1 particularly suitable for complex tasks that require processing long inputs and thinking extensively. MiniMax-M1 is trained using large-scale reinforcement learning (RL) on diverse problems including sandbox-based, real-world software engineering environments. In addition to M1's inherent efficiency advantage for RL training, we propose CISPO, a novel RL algorithm to further enhance RL efficiency. CISPO clips importance sampling weights rather than token updates, outperforming other competitive RL variants. Combining hybrid-attention and CISPO enables MiniMax-M1's full RL training on 512 H800 GPUs to complete in only three weeks, with a rental cost of just $534,700. We release two versions of MiniMax-M1 models with 40K and 80K thinking budgets respectively, where the 40K model represents an intermediate phase of the 80K training. Experiments on standard benchmarks show that our models are comparable or superior to strong open-weight models such as the original DeepSeek-R1 and Qwen3-235B, with particular strengths in complex software engineering, tool utilization, and long-context tasks. We publicly release MiniMax-M1 at https://github.com/MiniMax-AI/MiniMax-M1.

  • 127 authors
·
Jun 16, 2025 6

MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task

Mathematical reasoning represents a critical frontier in advancing large language models (LLMs). While step-by-step approaches have emerged as the dominant paradigm for mathematical problem-solving in LLMs, the quality of reasoning steps in training data fundamentally constrains the performance of the models. Recent studies has demonstrated that more detailed intermediate steps can enhance model performance, yet existing methods for step expansion either require more powerful external models or incur substantial computational costs. In this paper, we introduce MathFimer, a novel framework for mathematical reasoning step expansion inspired by the "Fill-in-the-middle" task from code completion. By decomposing solution chains into prefix-suffix pairs and training models to reconstruct missing intermediate steps, we develop a specialized model, MathFimer-7B, on our carefully curated NuminaMath-FIM dataset. We then apply these models to enhance existing mathematical reasoning datasets by inserting detailed intermediate steps into their solution chains, creating MathFimer-expanded versions. Through comprehensive experiments on multiple mathematical reasoning datasets, including MathInstruct, MetaMathQA and etc., we demonstrate that models trained on MathFimer-expanded data consistently outperform their counterparts trained on original data across various benchmarks such as GSM8K and MATH. Our approach offers a practical, scalable solution for enhancing mathematical reasoning capabilities in LLMs without relying on powerful external models or expensive inference procedures.

  • 8 authors
·
Feb 17, 2025

Can Sensitive Information Be Deleted From LLMs? Objectives for Defending Against Extraction Attacks

Pretrained language models sometimes possess knowledge that we do not wish them to, including memorized personal information and knowledge that could be used to harm people. They can also output toxic or harmful text. To mitigate these safety and informational issues, we propose an attack-and-defense framework for studying the task of deleting sensitive information directly from model weights. We study direct edits to model weights because (1) this approach should guarantee that particular deleted information is never extracted by future prompt attacks, and (2) it should protect against whitebox attacks, which is necessary for making claims about safety/privacy in a setting where publicly available model weights could be used to elicit sensitive information. Our threat model assumes that an attack succeeds if the answer to a sensitive question is located among a set of B generated candidates, based on scenarios where the information would be insecure if the answer is among B candidates. Experimentally, we show that even state-of-the-art model editing methods such as ROME struggle to truly delete factual information from models like GPT-J, as our whitebox and blackbox attacks can recover "deleted" information from an edited model 38% of the time. These attacks leverage two key observations: (1) that traces of deleted information can be found in intermediate model hidden states, and (2) that applying an editing method for one question may not delete information across rephrased versions of the question. Finally, we provide new defense methods that protect against some extraction attacks, but we do not find a single universally effective defense method. Our results suggest that truly deleting sensitive information is a tractable but difficult problem, since even relatively low attack success rates have potentially severe societal implications for real-world deployment of language models.

  • 3 authors
·
Sep 29, 2023 1