new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Motile Bacteria-laden Droplets Exhibit Reduced Adhesion and Anomalous Wetting Behavior

Hypothesis: Bacterial contamination of surfaces poses a major threat to public health. Designing effective antibacterial or self-cleaning surfaces requires understanding how bacteria-laden droplets interact with solid substrates and how readily they can be removed. We hypothesize that bacterial motility critically influences the early-stage surface interaction (i.e., surface adhesion) of bacteria-laden droplets, which cannot be captured by conventional contact angle goniometry. Experiments: Sessile droplets containing live and dead Escherichia coli (E. coli) were studied to probe their wetting and interfacial behavior. Contact angle goniometry was used to probe dynamic wetting, while a cantilever-deflection-based method was used to quantify adhesion. Internal flow dynamics were visualized using micro-particle image velocimetry (PIV) and analyzed statistically. Complementary sliding experiments on moderately wettable substrates were performed to assess contact line mobility under tilt. Findings: Despite lower surface tension, droplets containing live bacteria exhibited lower surface adhesion forces than their dead counterparts, with adhesion further decreasing at higher bacterial concentrations. Micro-PIV revealed that flagellated live E. coli actively resist evaporation-driven capillary flow via upstream migration, while at higher concentrations, collective dynamics emerge, producing spatially coherent bacterial motion despite temporal variability. These coordinated flows disrupt passive transport and promote depinning of the contact line, thereby reducing adhesion. Sliding experiments confirmed enhanced contact line mobility and frequent stick-slip motion in live droplets, even with lower receding contact angles and higher hysteresis. These findings provide mechanistic insight into droplet retention, informing the design of self-cleaning/antifouling surfaces.

  • 4 authors
·
Oct 28, 2025

Deep learning probability flows and entropy production rates in active matter

Active matter systems, from self-propelled colloids to motile bacteria, are characterized by the conversion of free energy into useful work at the microscopic scale. These systems generically involve physics beyond the reach of equilibrium statistical mechanics, and a persistent challenge has been to understand the nature of their nonequilibrium states. The entropy production rate and the magnitude of the steady-state probability current provide quantitative ways to do so by measuring the breakdown of time-reversal symmetry and the strength of nonequilibrium transport of measure. Yet, their efficient computation has remained elusive, as they depend on the system's unknown and high-dimensional probability density. Here, building upon recent advances in generative modeling, we develop a deep learning framework that estimates the score of this density. We show that the score, together with the microscopic equations of motion, gives direct access to the entropy production rate, the probability current, and their decomposition into local contributions from individual particles, spatial regions, and degrees of freedom. To represent the score, we introduce a novel, spatially-local transformer-based network architecture that learns high-order interactions between particles while respecting their underlying permutation symmetry. We demonstrate the broad utility and scalability of the method by applying it to several high-dimensional systems of interacting active particles undergoing motility-induced phase separation (MIPS). We show that a single instance of our network trained on a system of 4096 particles at one packing fraction can generalize to other regions of the phase diagram, including systems with as many as 32768 particles. We use this observation to quantify the spatial structure of the departure from equilibrium in MIPS as a function of the number of particles and the packing fraction.

  • 2 authors
·
Sep 22, 2023