new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

Segment Policy Optimization: Effective Segment-Level Credit Assignment in RL for Large Language Models

Enhancing the reasoning capabilities of large language models effectively using reinforcement learning (RL) remains a crucial challenge. Existing approaches primarily adopt two contrasting advantage estimation granularities: Token-level methods (e.g., PPO) aim to provide the fine-grained advantage signals but suffer from inaccurate estimation due to difficulties in training an accurate critic model. On the other extreme, trajectory-level methods (e.g., GRPO) solely rely on a coarse-grained advantage signal from the final reward, leading to imprecise credit assignment. To address these limitations, we propose Segment Policy Optimization (SPO), a novel RL framework that leverages segment-level advantage estimation at an intermediate granularity, achieving a better balance by offering more precise credit assignment than trajectory-level methods and requiring fewer estimation points than token-level methods, enabling accurate advantage estimation based on Monte Carlo (MC) without a critic model. SPO features three components with novel strategies: (1) flexible segment partition; (2) accurate segment advantage estimation; and (3) policy optimization using segment advantages, including a novel probability-mask strategy. We further instantiate SPO for two specific scenarios: (1) SPO-chain for short chain-of-thought (CoT), featuring novel cutpoint-based partition and chain-based advantage estimation, achieving 6-12 percentage point improvements in accuracy over PPO and GRPO on GSM8K. (2) SPO-tree for long CoT, featuring novel tree-based advantage estimation, which significantly reduces the cost of MC estimation, achieving 7-11 percentage point improvements over GRPO on MATH500 under 2K and 4K context evaluation. We make our code publicly available at https://github.com/AIFrameResearch/SPO.

  • 5 authors
·
May 29, 2025 2

RoboHop: Segment-based Topological Map Representation for Open-World Visual Navigation

Mapping is crucial for spatial reasoning, planning and robot navigation. Existing approaches range from metric, which require precise geometry-based optimization, to purely topological, where image-as-node based graphs lack explicit object-level reasoning and interconnectivity. In this paper, we propose a novel topological representation of an environment based on "image segments", which are semantically meaningful and open-vocabulary queryable, conferring several advantages over previous works based on pixel-level features. Unlike 3D scene graphs, we create a purely topological graph with segments as nodes, where edges are formed by a) associating segment-level descriptors between pairs of consecutive images and b) connecting neighboring segments within an image using their pixel centroids. This unveils a "continuous sense of a place", defined by inter-image persistence of segments along with their intra-image neighbours. It further enables us to represent and update segment-level descriptors through neighborhood aggregation using graph convolution layers, which improves robot localization based on segment-level retrieval. Using real-world data, we show how our proposed map representation can be used to i) generate navigation plans in the form of "hops over segments" and ii) search for target objects using natural language queries describing spatial relations of objects. Furthermore, we quantitatively analyze data association at the segment level, which underpins inter-image connectivity during mapping and segment-level localization when revisiting the same place. Finally, we show preliminary trials on segment-level `hopping' based zero-shot real-world navigation. Project page with supplementary details: oravus.github.io/RoboHop/

  • 7 authors
·
May 9, 2024

Point Linguist Model: Segment Any Object via Bridged Large 3D-Language Model

3D object segmentation with Large Language Models (LLMs) has become a prevailing paradigm due to its broad semantics, task flexibility, and strong generalization. However, this paradigm is hindered by representation misalignment: LLMs process high-level semantic tokens, whereas 3D point clouds convey only dense geometric structures. In prior methods, misalignment limits both input and output. At the input stage, dense point patches require heavy pre-alignment, weakening object-level semantics and confusing similar distractors. At the output stage, predictions depend only on dense features without explicit geometric cues, leading to a loss of fine-grained accuracy. To address these limitations, we present the Point Linguist Model (PLM), a general framework that bridges the representation gap between LLMs and dense 3D point clouds without requiring large-scale pre-alignment between 3D-text or 3D-images. Specifically, we introduce Object-centric Discriminative Representation (OcDR), which learns object-centric tokens that capture target semantics and scene relations under a hard negative-aware training objective. This mitigates the misalignment between LLM tokens and 3D points, enhances resilience to distractors, and facilitates semantic-level reasoning within LLMs. For accurate segmentation, we introduce the Geometric Reactivation Decoder (GRD), which predicts masks by combining OcDR tokens carrying LLM-inferred geometry with corresponding dense features, preserving comprehensive dense features throughout the pipeline. Extensive experiments show that PLM achieves significant improvements of +7.3 mIoU on ScanNetv2 and +6.0 mIoU on Multi3DRefer for 3D referring segmentation, with consistent gains across 7 benchmarks spanning 4 different tasks, demonstrating the effectiveness of comprehensive object-centric reasoning for robust 3D understanding.

  • 3 authors
·
Sep 9, 2025

VideoEval-Pro: Robust and Realistic Long Video Understanding Evaluation

Large multimodal models (LMMs) have recently emerged as a powerful tool for long video understanding (LVU), prompting the development of standardized LVU benchmarks to evaluate their performance. However, our investigation reveals a rather sober lesson for existing LVU benchmarks. First, most existing benchmarks rely heavily on multiple-choice questions (MCQs), whose evaluation results are inflated due to the possibility of guessing the correct answer; Second, a significant portion of questions in these benchmarks have strong priors to allow models to answer directly without even reading the input video. For example, Gemini-1.5-Pro can achieve over 50\% accuracy given a random frame from a long video on Video-MME. We also observe that increasing the number of frames does not necessarily lead to improvement on existing benchmarks, which is counterintuitive. As a result, the validity and robustness of current LVU benchmarks are undermined, impeding a faithful assessment of LMMs' long-video understanding capability. To tackle this problem, we propose VideoEval-Pro, a realistic LVU benchmark containing questions with open-ended short-answer, which truly require understanding the entire video. VideoEval-Pro assesses both segment-level and full-video understanding through perception and reasoning tasks. By evaluating 21 proprietary and open-source video LMMs, we conclude the following findings: (1) video LMMs show drastic performance (>25\%) drops on open-ended questions compared with MCQs; (2) surprisingly, higher MCQ scores do not lead to higher open-ended scores on VideoEval-Pro; (3) compared to other MCQ benchmarks, VideoEval-Pro benefits more from increasing the number of input frames. Our results show that VideoEval-Pro offers a more realistic and reliable measure of long video understanding, providing a clearer view of progress in this domain.

  • 7 authors
·
May 20, 2025 2

SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization

Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images. While current methods adopt the paradigm of training a dedicated network end-to-end using labeled image data, they are limited in terms of generalizability and interpretability. To address these issues, we first present a simple yet well-crafted framework named {\name}, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework, providing a strong baseline for social relation recognition. Specifically, we instruct VFMs to translate image content into a textual social story, and then utilize LLMs for text-based reasoning. {\name} introduces systematic design principles to adapt VFMs and LLMs separately and bridge their gaps. Without additional model training, it achieves competitive zero-shot results on two databases while offering interpretable answers, as LLMs can generate language-based explanations for the decisions. The manual prompt design process for LLMs at the reasoning phase is tedious and an automated prompt optimization method is desired. As we essentially convert a visual classification task into a generative task of LLMs, automatic prompt optimization encounters a unique long prompt optimization issue. To address this issue, we further propose the Greedy Segment Prompt Optimization (GSPO), which performs a greedy search by utilizing gradient information at the segment level. Experimental results show that GSPO significantly improves performance, and our method also generalizes to different image styles. The code is available at https://github.com/Mengzibin/SocialGPT.

  • 6 authors
·
Oct 28, 2024 3

Reinforcing Video Reasoning Segmentation to Think Before It Segments

Video reasoning segmentation (VRS) endeavors to delineate referred objects in videos guided by implicit instructions that encapsulate human intent and temporal logic. Previous approaches leverage large vision language models (LVLMs) to encode object semantics into <SEG> tokens for mask prediction. However, this paradigm suffers from limited interpretability during inference and suboptimal performance due to inadequate spatiotemporal reasoning. Drawing inspiration from seminal breakthroughs in reinforcement learning, we introduce Veason-R1, a specialized LVLM for VRS that emphasizes structured reasoning in segmentation. Veason-R1 is trained through Group Relative Policy Optimization (GRPO) augmented with Chain-of-Thought (CoT) initialization. To begin with, we curate high-quality CoT training data to instill structured reasoning trajectories, bridging video-level semantics and frame-level spatial grounding, yielding the supervised fine-tuned model Veason-SFT. Subsequently, GRPO fine-tuning encourages efficient exploration of the reasoning space by optimizing reasoning chains. To this end, we incorporate a holistic reward mechanism that synergistically enhances spatial alignment and temporal consistency, bolstering keyframe localization and fine-grained grounding. Comprehensive empirical evaluations demonstrate that Veason-R1 achieves state-of-the-art performance on multiple benchmarks, surpassing prior art by significant margins (e.g., +1.3 J &F in ReVOS and +10.0 J &F in ReasonVOS), while exhibiting robustness to hallucinations (+8.8 R). Our code and model weights will be available at Veason-R1.

  • 6 authors
·
Aug 15, 2025

VideoITG: Multimodal Video Understanding with Instructed Temporal Grounding

Recent studies have revealed that selecting informative and relevant video frames can significantly improve the performance of Video Large Language Models (Video-LLMs). Current methods, such as reducing inter-frame redundancy, employing separate models for image-text relevance assessment, or utilizing temporal video grounding for event localization, substantially adopt unsupervised learning paradigms, whereas they struggle to address the complex scenarios in long video understanding. We propose Instructed Temporal Grounding for Videos (VideoITG), featuring customized frame sampling aligned with user instructions. The core of VideoITG is the VidThinker pipeline, an automated annotation framework that explicitly mimics the human annotation process. First, it generates detailed clip-level captions conditioned on the instruction; then, it retrieves relevant video segments through instruction-guided reasoning; finally, it performs fine-grained frame selection to pinpoint the most informative visual evidence. Leveraging VidThinker, we construct the VideoITG-40K dataset, containing 40K videos and 500K instructed temporal grounding annotations. We then design a plug-and-play VideoITG model, which takes advantage of visual language alignment and reasoning capabilities of Video-LLMs, for effective frame selection in a discriminative manner. Coupled with Video-LLMs, VideoITG achieves consistent performance improvements across multiple multimodal video understanding benchmarks, showing its superiority and great potentials for video understanding.

  • 9 authors
·
Jul 17, 2025