Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSelf-Generated In-Context Examples Improve LLM Agents for Sequential Decision-Making Tasks
Many methods for improving Large Language Model (LLM) agents for sequential decision-making tasks depend on task-specific knowledge engineering--such as prompt tuning, curated in-context examples, or customized observation and action spaces. Using these approaches, agent performance improves with the quality or amount of knowledge engineering invested. Instead, we investigate how LLM agents can automatically improve their performance by learning in-context from their own successful experiences on similar tasks. Rather than relying on task-specific knowledge engineering, we focus on constructing and refining a database of self-generated examples. We demonstrate that even a naive accumulation of successful trajectories across training tasks boosts test performance on three benchmarks: ALFWorld (73% to 89%), Wordcraft (55% to 64%), and InterCode-SQL (75% to 79%)--matching the performance the initial agent achieves if allowed two to three attempts per task. We then introduce two extensions: (1) database-level selection through population-based training to identify high-performing example collections, and (2) exemplar-level selection that retains individual trajectories based on their empirical utility as in-context examples. These extensions further enhance performance, achieving 91% on ALFWorld--matching more complex approaches that employ task-specific components and prompts. Our results demonstrate that automatic trajectory database construction offers a compelling alternative to labor-intensive knowledge engineering.
Is Reinforcement Learning (Not) for Natural Language Processing: Benchmarks, Baselines, and Building Blocks for Natural Language Policy Optimization
We tackle the problem of aligning pre-trained large language models (LMs) with human preferences. If we view text generation as a sequential decision-making problem, reinforcement learning (RL) appears to be a natural conceptual framework. However, using RL for LM-based generation faces empirical challenges, including training instability due to the combinatorial action space, as well as a lack of open-source libraries and benchmarks customized for LM alignment. Thus, a question rises in the research community: is RL a practical paradigm for NLP? To help answer this, we first introduce an open-source modular library, RL4LMs (Reinforcement Learning for Language Models), for optimizing language generators with RL. The library consists of on-policy RL algorithms that can be used to train any encoder or encoder-decoder LM in the HuggingFace library (Wolf et al. 2020) with an arbitrary reward function. Next, we present the GRUE (General Reinforced-language Understanding Evaluation) benchmark, a set of 6 language generation tasks which are supervised not by target strings, but by reward functions which capture automated measures of human preference.GRUE is the first leaderboard-style evaluation of RL algorithms for NLP tasks. Finally, we introduce an easy-to-use, performant RL algorithm, NLPO (Natural Language Policy Optimization)} that learns to effectively reduce the combinatorial action space in language generation. We show 1) that RL techniques are generally better than supervised methods at aligning LMs to human preferences; and 2) that NLPO exhibits greater stability and performance than previous policy gradient methods (e.g., PPO (Schulman et al. 2017)), based on both automatic and human evaluations.
LLMs for Relational Reasoning: How Far are We?
Large language models (LLMs) have revolutionized many areas (e.g. natural language processing, software engineering, etc.) by achieving state-of-the-art performance on extensive downstream tasks. Aiming to achieve robust and general artificial intelligence, there has been a surge of interest in investigating the reasoning ability of the LLMs. Whereas the textual and numerical reasoning benchmarks adopted by previous works are rather shallow and simple, it is hard to conclude that the LLMs possess strong reasoning ability by merely achieving positive results on these benchmarks. Recent efforts have demonstrated that the LLMs are poor at solving sequential decision-making problems that require common-sense planning by evaluating their performance on the reinforcement learning benchmarks. In this work, we conduct an in-depth assessment of several state-of-the-art LLMs' reasoning ability based on the inductive logic programming (ILP) benchmark, which is broadly recognized as a representative and challenging measurement for evaluating logic program induction/synthesis systems as it requires inducing strict cause-effect logic to achieve robust deduction on independent and identically distributed (IID) and out-of-distribution (OOD) test samples. Our evaluations illustrate that compared with the neural program induction systems which are much smaller in model size, the state-of-the-art LLMs are much poorer in terms of reasoning ability by achieving much lower performance and generalization using either natural language prompting or truth-value matrix prompting.
LiveTradeBench: Seeking Real-World Alpha with Large Language Models
Large language models (LLMs) achieve strong performance across benchmarks--from knowledge quizzes and math reasoning to web-agent tasks--but these tests occur in static settings, lacking real dynamics and uncertainty. Consequently, they evaluate isolated reasoning or problem-solving rather than decision-making under uncertainty. To address this, we introduce LiveTradeBench, a live trading environment for evaluating LLM agents in realistic and evolving markets. LiveTradeBench follows three design principles: (i) Live data streaming of market prices and news, eliminating dependence on offline backtesting and preventing information leakage while capturing real-time uncertainty; (ii) a portfolio-management abstraction that extends control from single-asset actions to multi-asset allocation, integrating risk management and cross-asset reasoning; and (iii) multi-market evaluation across structurally distinct environments--U.S. stocks and Polymarket prediction markets--differing in volatility, liquidity, and information flow. At each step, an agent observes prices, news, and its portfolio, then outputs percentage allocations that balance risk and return. Using LiveTradeBench, we run 50-day live evaluations of 21 LLMs across families. Results show that (1) high LMArena scores do not imply superior trading outcomes; (2) models display distinct portfolio styles reflecting risk appetite and reasoning dynamics; and (3) some LLMs effectively leverage live signals to adapt decisions. These findings expose a gap between static evaluation and real-world competence, motivating benchmarks that test sequential decision making and consistency under live uncertainty.
Towards Trustworthy GUI Agents: A Survey
GUI agents, powered by large foundation models, can interact with digital interfaces, enabling various applications in web automation, mobile navigation, and software testing. However, their increasing autonomy has raised critical concerns about their security, privacy, and safety. This survey examines the trustworthiness of GUI agents in five critical dimensions: security vulnerabilities, reliability in dynamic environments, transparency and explainability, ethical considerations, and evaluation methodologies. We also identify major challenges such as vulnerability to adversarial attacks, cascading failure modes in sequential decision-making, and a lack of realistic evaluation benchmarks. These issues not only hinder real-world deployment but also call for comprehensive mitigation strategies beyond task success. As GUI agents become more widespread, establishing robust safety standards and responsible development practices is essential. This survey provides a foundation for advancing trustworthy GUI agents through systematic understanding and future research.
VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making
While Large Language Models (LLMs) excel at reasoning on text and Vision-Language Models (VLMs) are highly effective for visual perception, applying those models for visual instruction-based planning remains a widely open problem. In this paper, we introduce VIPER, a novel framework for multimodal instruction-based planning that integrates VLM-based perception with LLM-based reasoning. Our approach uses a modular pipeline where a frozen VLM generates textual descriptions of image observations, which are then processed by an LLM policy to predict actions based on the task goal. We fine-tune the reasoning module using behavioral cloning and reinforcement learning, improving our agent's decision-making capabilities. Experiments on the ALFWorld benchmark show that VIPER significantly outperforms state-of-the-art visual instruction-based planners while narrowing the gap with purely text-based oracles. By leveraging text as an intermediate representation, VIPER also enhances explainability, paving the way for a fine-grained analysis of perception and reasoning components.
LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios
Building agents based on tree-search planning capabilities with learned models has achieved remarkable success in classic decision-making problems, such as Go and Atari. However, it has been deemed challenging or even infeasible to extend Monte Carlo Tree Search (MCTS) based algorithms to diverse real-world applications, especially when these environments involve complex action spaces and significant simulation costs, or inherent stochasticity. In this work, we introduce LightZero, the first unified benchmark for deploying MCTS/MuZero in general sequential decision scenarios. Specificially, we summarize the most critical challenges in designing a general MCTS-style decision-making solver, then decompose the tightly-coupled algorithm and system design of tree-search RL methods into distinct sub-modules. By incorporating more appropriate exploration and optimization strategies, we can significantly enhance these sub-modules and construct powerful LightZero agents to tackle tasks across a wide range of domains, such as board games, Atari, MuJoCo, MiniGrid and GoBigger. Detailed benchmark results reveal the significant potential of such methods in building scalable and efficient decision intelligence. The code is available as part of OpenDILab at https://github.com/opendilab/LightZero.
Population-based Evaluation in Repeated Rock-Paper-Scissors as a Benchmark for Multiagent Reinforcement Learning
Progress in fields of machine learning and adversarial planning has benefited significantly from benchmark domains, from checkers and the classic UCI data sets to Go and Diplomacy. In sequential decision-making, agent evaluation has largely been restricted to few interactions against experts, with the aim to reach some desired level of performance (e.g. beating a human professional player). We propose a benchmark for multiagent learning based on repeated play of the simple game Rock, Paper, Scissors along with a population of forty-three tournament entries, some of which are intentionally sub-optimal. We describe metrics to measure the quality of agents based both on average returns and exploitability. We then show that several RL, online learning, and language model approaches can learn good counter-strategies and generalize well, but ultimately lose to the top-performing bots, creating an opportunity for research in multiagent learning.
Monopoly Deal: A Benchmark Environment for Bounded One-Sided Response Games
Card games are widely used to study sequential decision-making under uncertainty, with real-world analogues in negotiation, finance, and cybersecurity. These games typically fall into three categories based on the flow of control: strictly sequential (players alternate single actions), deterministic response (some actions trigger a fixed outcome), and unbounded reciprocal response (alternating counterplays are permitted). A less-explored but strategically rich structure is the bounded one-sided response, where a player's action briefly transfers control to the opponent, who must satisfy a fixed condition through one or more moves before the turn resolves. We term games featuring this mechanism Bounded One-Sided Response Games (BORGs). We introduce a modified version of Monopoly Deal as a benchmark environment that isolates this dynamic, where a Rent action forces the opponent to choose payment assets. The gold-standard algorithm, Counterfactual Regret Minimization (CFR), converges on effective strategies without novel algorithmic extensions. A lightweight full-stack research platform unifies the environment, a parallelized CFR runtime, and a human-playable web interface. The trained CFR agent and source code are available at https://monopolydeal.ai.
AgentClinic: a multimodal agent benchmark to evaluate AI in simulated clinical environments
Diagnosing and managing a patient is a complex, sequential decision making process that requires physicians to obtain information -- such as which tests to perform -- and to act upon it. Recent advances in artificial intelligence (AI) and large language models (LLMs) promise to profoundly impact clinical care. However, current evaluation schemes overrely on static medical question-answering benchmarks, falling short on interactive decision-making that is required in real-life clinical work. Here, we present AgentClinic: a multimodal benchmark to evaluate LLMs in their ability to operate as agents in simulated clinical environments. In our benchmark, the doctor agent must uncover the patient's diagnosis through dialogue and active data collection. We present two open medical agent benchmarks: a multimodal image and dialogue environment, AgentClinic-NEJM, and a dialogue-only environment, AgentClinic-MedQA. We embed cognitive and implicit biases both in patient and doctor agents to emulate realistic interactions between biased agents. We find that introducing bias leads to large reductions in diagnostic accuracy of the doctor agents, as well as reduced compliance, confidence, and follow-up consultation willingness in patient agents. Evaluating a suite of state-of-the-art LLMs, we find that several models that excel in benchmarks like MedQA are performing poorly in AgentClinic-MedQA. We find that the LLM used in the patient agent is an important factor for performance in the AgentClinic benchmark. We show that both having limited interactions as well as too many interaction reduces diagnostic accuracy in doctor agents. The code and data for this work is publicly available at https://AgentClinic.github.io.
Benchmark-Driven Selection of AI: Evidence from DeepSeek-R1
Evaluation of reasoning language models gained importance after it was observed that they can combine their existing capabilities into novel traces of intermediate steps before task completion and that the traces can sometimes help them to generalize better than past models. As reasoning becomes the next scaling dimension of large language models, careful study of their capabilities in critical tasks is needed. We show that better performance is not always caused by test-time algorithmic improvements or model sizes but also by using impactful benchmarks as curricula for learning. We call this benchmark-driven selection of AI and show its effects on DeepSeek-R1 using our sequential decision-making problem from Humanity's Last Exam. Steering development of AI by impactful benchmarks trades evaluation for learning and makes novelty of test tasks key for measuring generalization capabilities of reasoning models. Consequently, some benchmarks could be seen as curricula for training rather than unseen test sets.
End-to-End Goal-Driven Web Navigation
We propose a goal-driven web navigation as a benchmark task for evaluating an agent with abilities to understand natural language and plan on partially observed environments. In this challenging task, an agent navigates through a website, which is represented as a graph consisting of web pages as nodes and hyperlinks as directed edges, to find a web page in which a query appears. The agent is required to have sophisticated high-level reasoning based on natural languages and efficient sequential decision-making capability to succeed. We release a software tool, called WebNav, that automatically transforms a website into this goal-driven web navigation task, and as an example, we make WikiNav, a dataset constructed from the English Wikipedia. We extensively evaluate different variants of neural net based artificial agents on WikiNav and observe that the proposed goal-driven web navigation well reflects the advances in models, making it a suitable benchmark for evaluating future progress. Furthermore, we extend the WikiNav with question-answer pairs from Jeopardy! and test the proposed agent based on recurrent neural networks against strong inverted index based search engines. The artificial agents trained on WikiNav outperforms the engined based approaches, demonstrating the capability of the proposed goal-driven navigation as a good proxy for measuring the progress in real-world tasks such as focused crawling and question-answering.
Embodied Scene Understanding for Vision Language Models via MetaVQA
Vision Language Models (VLMs) demonstrate significant potential as embodied AI agents for various mobility applications. However, a standardized, closed-loop benchmark for evaluating their spatial reasoning and sequential decision-making capabilities is lacking. To address this, we present MetaVQA: a comprehensive benchmark designed to assess and enhance VLMs' understanding of spatial relationships and scene dynamics through Visual Question Answering (VQA) and closed-loop simulations. MetaVQA leverages Set-of-Mark prompting and top-down view ground-truth annotations from nuScenes and Waymo datasets to automatically generate extensive question-answer pairs based on diverse real-world traffic scenarios, ensuring object-centric and context-rich instructions. Our experiments show that fine-tuning VLMs with the MetaVQA dataset significantly improves their spatial reasoning and embodied scene comprehension in safety-critical simulations, evident not only in improved VQA accuracies but also in emerging safety-aware driving maneuvers. In addition, the learning demonstrates strong transferability from simulation to real-world observation. Code and data will be publicly available at https://metadriverse.github.io/metavqa .
OceanGym: A Benchmark Environment for Underwater Embodied Agents
We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.
PLANET: A Collection of Benchmarks for Evaluating LLMs' Planning Capabilities
Planning is central to agents and agentic AI. The ability to plan, e.g., creating travel itineraries within a budget, holds immense potential in both scientific and commercial contexts. Moreover, optimal plans tend to require fewer resources compared to ad-hoc methods. To date, a comprehensive understanding of existing planning benchmarks appears to be lacking. Without it, comparing planning algorithms' performance across domains or selecting suitable algorithms for new scenarios remains challenging. In this paper, we examine a range of planning benchmarks to identify commonly used testbeds for algorithm development and highlight potential gaps. These benchmarks are categorized into embodied environments, web navigation, scheduling, games and puzzles, and everyday task automation. Our study recommends the most appropriate benchmarks for various algorithms and offers insights to guide future benchmark development.
RewardBench 2: Advancing Reward Model Evaluation
Reward models are used throughout the post-training of language models to capture nuanced signals from preference data and provide a training target for optimization across instruction following, reasoning, safety, and more domains. The community has begun establishing best practices for evaluating reward models, from the development of benchmarks that test capabilities in specific skill areas to others that test agreement with human preferences. At the same time, progress in evaluation has not been mirrored by the effectiveness of reward models in downstream tasks -- simpler direct alignment algorithms are reported to work better in many cases. This paper introduces RewardBench 2, a new multi-skill reward modeling benchmark designed to bring new, challenging data for accuracy-based reward model evaluation -- models score about 20 points on average lower on RewardBench 2 compared to the first RewardBench -- while being highly correlated with downstream performance. Compared to most other benchmarks, RewardBench 2 sources new human prompts instead of existing prompts from downstream evaluations, facilitating more rigorous evaluation practices. In this paper, we describe our benchmark construction process and report how existing models perform on it, while quantifying how performance on the benchmark correlates with downstream use of the models in both inference-time scaling algorithms, like best-of-N sampling, and RLHF training algorithms like proximal policy optimization.
Craftax: A Lightning-Fast Benchmark for Open-Ended Reinforcement Learning
Benchmarks play a crucial role in the development and analysis of reinforcement learning (RL) algorithms. We identify that existing benchmarks used for research into open-ended learning fall into one of two categories. Either they are too slow for meaningful research to be performed without enormous computational resources, like Crafter, NetHack and Minecraft, or they are not complex enough to pose a significant challenge, like Minigrid and Procgen. To remedy this, we first present Craftax-Classic: a ground-up rewrite of Crafter in JAX that runs up to 250x faster than the Python-native original. A run of PPO using 1 billion environment interactions finishes in under an hour using only a single GPU and averages 90% of the optimal reward. To provide a more compelling challenge we present the main Craftax benchmark, a significant extension of the Crafter mechanics with elements inspired from NetHack. Solving Craftax requires deep exploration, long term planning and memory, as well as continual adaptation to novel situations as more of the world is discovered. We show that existing methods including global and episodic exploration, as well as unsupervised environment design fail to make material progress on the benchmark. We believe that Craftax can for the first time allow researchers to experiment in a complex, open-ended environment with limited computational resources.
Provably Efficient UCB-type Algorithms For Learning Predictive State Representations
The general sequential decision-making problem, which includes Markov decision processes (MDPs) and partially observable MDPs (POMDPs) as special cases, aims at maximizing a cumulative reward by making a sequence of decisions based on a history of observations and actions over time. Recent studies have shown that the sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs). Despite these advancements, existing approaches typically involve oracles or steps that are computationally intractable. On the other hand, the upper confidence bound (UCB) based approaches, which have served successfully as computationally efficient methods in bandits and MDPs, have not been investigated for more general PSRs, due to the difficulty of optimistic bonus design in these more challenging settings. This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models. We further characterize the sample complexity bounds for our designed UCB-type algorithms for both online and offline PSRs. In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
PhysVLM-AVR: Active Visual Reasoning for Multimodal Large Language Models in Physical Environments
Visual reasoning in multimodal large language models (MLLMs) has primarily been studied in static, fully observable settings, limiting their effectiveness in real-world environments where information is often incomplete due to occlusion or limited field of view. Humans, in contrast, actively explore and interact with their environment-moving, examining, and manipulating objects-to gather information through a closed-loop process integrating perception, reasoning, and action. Inspired by this human capability, we introduce the Active Visual Reasoning (AVR) task, extending visual reasoning to partially observable, interactive environments. AVR necessitates agents to: (1) actively acquire information via sequential physical actions, (2) integrate observations across multiple steps for coherent reasoning, and (3) dynamically adjust decisions based on evolving visual feedback. To rigorously evaluate AVR, we introduce CLEVR-AVR, a simulation benchmark featuring multi-round interactive environments designed to assess both reasoning correctness and information-gathering efficiency. We present AVR-152k, a large-scale dataset that offers rich Chain-of-Thought (CoT) annotations detailing iterative reasoning for uncertainty identification, action-conditioned information gain prediction, and information-maximizing action selection, crucial for training agents in a higher-order Markov Decision Process. Building on this, we develop PhysVLM-AVR, an MLLM achieving state-of-the-art performance on CLEVR-AVR, embodied reasoning (OpenEQA, RoboVQA), and passive visual reasoning (GeoMath, Geometry30K). Our analysis also reveals that current embodied MLLMs, despite detecting information incompleteness, struggle to actively acquire and integrate new information through interaction, highlighting a fundamental gap in active reasoning capabilities.
VerifyBench: Benchmarking Reference-based Reward Systems for Large Language Models
Large reasoning models such as OpenAI o1 and DeepSeek-R1 have achieved remarkable performance in the domain of reasoning. A key component of their training is the incorporation of verifiable rewards within reinforcement learning (RL). However, existing reward benchmarks do not evaluate reference-based reward systems, leaving researchers with limited understanding of the accuracy of verifiers used in RL. In this paper, we introduce two benchmarks, VerifyBench and VerifyBench-Hard, designed to assess the performance of reference-based reward systems. These benchmarks are constructed through meticulous data collection and curation, followed by careful human annotation to ensure high quality. Current models still show considerable room for improvement on both VerifyBench and VerifyBench-Hard, especially smaller-scale models. Furthermore, we conduct a thorough and comprehensive analysis of evaluation results, offering insights for understanding and developing reference-based reward systems. Our proposed benchmarks serve as effective tools for guiding the development of verifier accuracy and the reasoning capabilities of models trained via RL in reasoning tasks.
Learning to Make Adherence-Aware Advice
As artificial intelligence (AI) systems play an increasingly prominent role in human decision-making, challenges surface in the realm of human-AI interactions. One challenge arises from the suboptimal AI policies due to the inadequate consideration of humans disregarding AI recommendations, as well as the need for AI to provide advice selectively when it is most pertinent. This paper presents a sequential decision-making model that (i) takes into account the human's adherence level (the probability that the human follows/rejects machine advice) and (ii) incorporates a defer option so that the machine can temporarily refrain from making advice. We provide learning algorithms that learn the optimal advice policy and make advice only at critical time stamps. Compared to problem-agnostic reinforcement learning algorithms, our specialized learning algorithms not only enjoy better theoretical convergence properties but also show strong empirical performance.
REST: Stress Testing Large Reasoning Models by Asking Multiple Problems at Once
Recent Large Reasoning Models (LRMs) have achieved remarkable progress on task-specific benchmarks, yet their evaluation methods remain constrained by isolated problem-solving paradigms. Existing benchmarks predominantly assess single-question reasoning through sequential testing, resulting critical limitations: (1) vulnerability to data contamination and less challenging (e.g., DeepSeek-R1 achieves 97.0% on MATH500), forcing costly and perpetual creation of new questions with large human efforts, (2) failure to evaluate models under multi-context pressure, a key requirement for real-world deployment. To bridge this gap, we present REST (Reasoning Evaluation through Simultaneous Testing), a stress-testing framework that concurrently exposes LRMs to multiple problems simultaneously. Beyond basic reasoning, REST specifically evaluates several under-tested capabilities: contextual priority allocation, cross-problem interference resistance, and dynamic cognitive load management. Our evaluation reveals several striking findings: Even state-of-the-art (SOTA) models like DeepSeek-R1 exhibit substantial performance degradation under stress testing. Crucially, REST demonstrates stronger discriminative power than existing benchmarks, revealing pronounced performance differences among models that exhibit similar, near-ceiling performance under single-question evaluations. Some key mechanistic insights emerge from our analysis: (1) the "overthinking trap" is a critical factor contributing to the performance degradation; (2) the models trained with "long2short" technique preserve more accuracy of their single-problem performance under REST, outperforming standard-trained counterparts. These results establish REST as a cost-efficient, future-proof evaluation paradigm that better reflects real-world reasoning demands while reducing reliance on continuous human annotation.
Scaling over Scaling: Exploring Test-Time Scaling Pareto in Large Reasoning Models
Large reasoning models (LRMs) have exhibited the capacity of enhancing reasoning performance via internal test-time scaling. Building upon this, a promising direction is to further scale test-time compute to unlock even greater reasoning capabilities. However, as we push these scaling boundaries, systematically understanding the practical limits and achieving optimal resource allocation becomes a critical challenge. In this paper, we investigate the scaling Pareto of test-time scaling and introduce the Test-Time Scaling Performance Model (TTSPM). We theoretically analyze two fundamental paradigms for such extended scaling, parallel scaling and sequential scaling, from a probabilistic modeling perspective. Our primary contribution is the derivation of the saturation point on the scaling budget for both strategies, identifying thresholds beyond which additional computation yields diminishing returns. Remarkably, despite their distinct mechanisms, both paradigms converge to a unified mathematical structure in their upper bounds. We empirically validate our theoretical findings on challenging reasoning benchmarks, including AIME, MATH-500, and GPQA, demonstrating the practical utility of these bounds for test-time resource allocation. We hope that this work provides insights into the cost-benefit trade-offs of test-time scaling, guiding the development of more resource-efficient inference strategies for large reasoning models.
What are the best systems? New perspectives on NLP Benchmarking
In Machine Learning, a benchmark refers to an ensemble of datasets associated with one or multiple metrics together with a way to aggregate different systems performances. They are instrumental in (i) assessing the progress of new methods along different axes and (ii) selecting the best systems for practical use. This is particularly the case for NLP with the development of large pre-trained models (e.g. GPT, BERT) that are expected to generalize well on a variety of tasks. While the community mainly focused on developing new datasets and metrics, there has been little interest in the aggregation procedure, which is often reduced to a simple average over various performance measures. However, this procedure can be problematic when the metrics are on a different scale, which may lead to spurious conclusions. This paper proposes a new procedure to rank systems based on their performance across different tasks. Motivated by the social choice theory, the final system ordering is obtained through aggregating the rankings induced by each task and is theoretically grounded. We conduct extensive numerical experiments (on over 270k scores) to assess the soundness of our approach both on synthetic and real scores (e.g. GLUE, EXTREM, SEVAL, TAC, FLICKR). In particular, we show that our method yields different conclusions on state-of-the-art systems than the mean-aggregation procedure while being both more reliable and robust.
Revisiting the Test-Time Scaling of o1-like Models: Do they Truly Possess Test-Time Scaling Capabilities?
The advent of test-time scaling in large language models (LLMs), exemplified by OpenAI's o1 series, has advanced reasoning capabilities by scaling computational resource allocation during inference. While successors like QwQ, Deepseek-R1 (R1) and LIMO replicate these advancements, whether these models truly possess test-time scaling capabilities remains underexplored. This study found that longer CoTs of these o1-like models do not consistently enhance accuracy; in fact, correct solutions are often shorter than incorrect ones for the same questions. Further investigation shows this phenomenon is closely related to models' self-revision capabilities - longer CoTs contain more self-revisions, which often lead to performance degradation. We then compare sequential and parallel scaling strategies on QwQ, R1 and LIMO, finding that parallel scaling achieves better coverage and scalability. Based on these insights, we propose Shortest Majority Vote, a method that combines parallel scaling strategies with CoT length characteristics, significantly improving models' test-time scalability compared to conventional majority voting approaches.
MoReBench: Evaluating Procedural and Pluralistic Moral Reasoning in Language Models, More than Outcomes
As AI systems progress, we rely more on them to make decisions with us and for us. To ensure that such decisions are aligned with human values, it is imperative for us to understand not only what decisions they make but also how they come to those decisions. Reasoning language models, which provide both final responses and (partially transparent) intermediate thinking traces, present a timely opportunity to study AI procedural reasoning. Unlike math and code problems which often have objectively correct answers, moral dilemmas are an excellent testbed for process-focused evaluation because they allow for multiple defensible conclusions. To do so, we present MoReBench: 1,000 moral scenarios, each paired with a set of rubric criteria that experts consider essential to include (or avoid) when reasoning about the scenarios. MoReBench contains over 23 thousand criteria including identifying moral considerations, weighing trade-offs, and giving actionable recommendations to cover cases on AI advising humans moral decisions as well as making moral decisions autonomously. Separately, we curate MoReBench-Theory: 150 examples to test whether AI can reason under five major frameworks in normative ethics. Our results show that scaling laws and existing benchmarks on math, code, and scientific reasoning tasks fail to predict models' abilities to perform moral reasoning. Models also show partiality towards specific moral frameworks (e.g., Benthamite Act Utilitarianism and Kantian Deontology), which might be side effects of popular training paradigms. Together, these benchmarks advance process-focused reasoning evaluation towards safer and more transparent AI.
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing their relative performance on a large suite of tasks. Most published results on deep RL benchmarks compare point estimates of aggregate performance such as mean and median scores across tasks, ignoring the statistical uncertainty implied by the use of a finite number of training runs. Beginning with the Arcade Learning Environment (ALE), the shift towards computationally-demanding benchmarks has led to the practice of evaluating only a small number of runs per task, exacerbating the statistical uncertainty in point estimates. In this paper, we argue that reliable evaluation in the few run deep RL regime cannot ignore the uncertainty in results without running the risk of slowing down progress in the field. We illustrate this point using a case study on the Atari 100k benchmark, where we find substantial discrepancies between conclusions drawn from point estimates alone versus a more thorough statistical analysis. With the aim of increasing the field's confidence in reported results with a handful of runs, we advocate for reporting interval estimates of aggregate performance and propose performance profiles to account for the variability in results, as well as present more robust and efficient aggregate metrics, such as interquartile mean scores, to achieve small uncertainty in results. Using such statistical tools, we scrutinize performance evaluations of existing algorithms on other widely used RL benchmarks including the ALE, Procgen, and the DeepMind Control Suite, again revealing discrepancies in prior comparisons. Our findings call for a change in how we evaluate performance in deep RL, for which we present a more rigorous evaluation methodology, accompanied with an open-source library rliable, to prevent unreliable results from stagnating the field.
L0-Reasoning Bench: Evaluating Procedural Correctness in Language Models via Simple Program Execution
Complex reasoning tasks often rely on the ability to consistently and accurately apply simple rules across incremental steps, a foundational capability which we term "level-0" reasoning. To systematically evaluate this capability, we introduce L0-Bench, a language model benchmark for testing procedural correctness -- the ability to generate correct reasoning processes, complementing existing benchmarks that primarily focus on outcome correctness. Given synthetic Python functions with simple operations, L0-Bench grades models on their ability to generate step-by-step, error-free execution traces. The synthetic nature of L0-Bench enables systematic and scalable generation of test programs along various axes (e.g., number of trace steps). We evaluate a diverse array of recent closed-source and open-weight models on a baseline test set. All models exhibit degradation as the number of target trace steps increases, while larger models and reasoning-enhanced models better maintain correctness over multiple steps. Additionally, we use L0-Bench to explore test-time scaling along three dimensions: input context length, number of solutions for majority voting, and inference steps. Our results suggest substantial room to improve "level-0" reasoning and potential directions to build more reliable reasoning systems.
Tracing LLM Reasoning Processes with Strategic Games: A Framework for Planning, Revision, and Resource-Constrained Decision Making
Large language models (LLMs) are increasingly used for tasks that require complex reasoning. Most benchmarks focus on final outcomes but overlook the intermediate reasoning steps - such as planning, revision, and decision making under resource constraints. We argue that measuring these internal processes is essential for understanding model behavior and improving reliability. We propose using strategic games as a natural evaluation environment: closed, rule-based systems with clear states, limited resources, and automatic feedback. We introduce a framework that evaluates LLMs along three core dimensions: planning, revision, and resource-constrained decision making. To operationalize this, we define metrics beyond win rate, including overcorrection risk rate, correction success rate, improvement slope, and over-budget ratio. In 4320 adversarial rounds across 12 leading models, ChatGPT-o3-mini achieves the top composite score, with a win rate of 74.7 percent, a correction success rate of 78.6 percent, and an improvement slope of 0.041. By contrast, Qwen-Plus, despite an overcorrection risk rate of 81.6 percent, wins only 25.6 percent of its matches - primarily due to excessive resource use. We also observe a negative correlation between overcorrection risk rate and correction success rate (Pearson r = -0.51, p = 0.093), suggesting that more frequent edits do not always improve outcomes. Our findings highlight the value of assessing not only what LLMs decide but how they arrive at those decisions
The SIFo Benchmark: Investigating the Sequential Instruction Following Ability of Large Language Models
Following multiple instructions is a crucial ability for large language models (LLMs). Evaluating this ability comes with significant challenges: (i) limited coherence between multiple instructions, (ii) positional bias where the order of instructions affects model performance, and (iii) a lack of objectively verifiable tasks. To address these issues, we introduce a benchmark designed to evaluate models' abilities to follow multiple instructions through sequential instruction following (SIFo) tasks. In SIFo, the successful completion of multiple instructions is verifiable by examining only the final instruction. Our benchmark evaluates instruction following using four tasks (text modification, question answering, mathematics, and security rule following), each assessing different aspects of sequential instruction following. Our evaluation of popular LLMs, both closed-source and open-source, shows that more recent and larger models significantly outperform their older and smaller counterparts on the SIFo tasks, validating the benchmark's effectiveness. All models struggle with following sequences of instructions, hinting at an important lack of robustness of today's language models.
The Sequential Edge: Inverse-Entropy Voting Beats Parallel Self-Consistency at Matched Compute
We revisit test-time scaling for language model reasoning and ask a fundamental question: at equal token budget and compute, is it better to run multiple independent chains in parallel, or to run fewer chains that iteratively refine through sequential steps? Through comprehensive evaluation across 5 state-of-the-art open source models and 3 challenging reasoning benchmarks, we find that sequential scaling where chains explicitly build upon previous attempts consistently outperforms the dominant parallel self-consistency paradigm in 95.6% of configurations with gains in accuracy upto 46.7%. Further, we introduce inverse-entropy weighted voting, a novel training-free method to further boost the accuracy of sequential scaling. By weighing answers in proportion to the inverse entropy of their reasoning chains, we increase our success rate over parallel majority and establish it as the optimal test-time scaling strategy. Our findings fundamentally challenge the parallel reasoning orthodoxy that has dominated test-time scaling since Wang et al.'s self-consistency decoding (Wang et al., 2022), positioning sequential refinement as the robust default for modern LLM reasoning and necessitating a paradigm shift in how we approach inference-time optimization.
Towards QD-suite: developing a set of benchmarks for Quality-Diversity algorithms
While the field of Quality-Diversity (QD) has grown into a distinct branch of stochastic optimization, a few problems, in particular locomotion and navigation tasks, have become de facto standards. Are such benchmarks sufficient? Are they representative of the key challenges faced by QD algorithms? Do they provide the ability to focus on one particular challenge by properly disentangling it from others? Do they have much predictive power in terms of scalability and generalization? Existing benchmarks are not standardized, and there is currently no MNIST equivalent for QD. Inspired by recent works on Reinforcement Learning benchmarks, we argue that the identification of challenges faced by QD methods and the development of targeted, challenging, scalable but affordable benchmarks is an important step. As an initial effort, we identify three problems that are challenging in sparse reward settings, and propose associated benchmarks: (1) Behavior metric bias, which can result from the use of metrics that do not match the structure of the behavior space. (2) Behavioral Plateaus, with varying characteristics, such that escaping them would require adaptive QD algorithms and (3) Evolvability Traps, where small variations in genotype result in large behavioral changes. The environments that we propose satisfy the properties listed above.
HAZARD Challenge: Embodied Decision Making in Dynamically Changing Environments
Recent advances in high-fidelity virtual environments serve as one of the major driving forces for building intelligent embodied agents to perceive, reason and interact with the physical world. Typically, these environments remain unchanged unless agents interact with them. However, in real-world scenarios, agents might also face dynamically changing environments characterized by unexpected events and need to rapidly take action accordingly. To remedy this gap, we propose a new simulated embodied benchmark, called HAZARD, specifically designed to assess the decision-making abilities of embodied agents in dynamic situations. HAZARD consists of three unexpected disaster scenarios, including fire, flood, and wind, and specifically supports the utilization of large language models (LLMs) to assist common sense reasoning and decision-making. This benchmark enables us to evaluate autonomous agents' decision-making capabilities across various pipelines, including reinforcement learning (RL), rule-based, and search-based methods in dynamically changing environments. As a first step toward addressing this challenge using large language models, we further develop an LLM-based agent and perform an in-depth analysis of its promise and challenge of solving these challenging tasks. HAZARD is available at https://vis-www.cs.umass.edu/hazard/.
SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
To Backtrack or Not to Backtrack: When Sequential Search Limits Model Reasoning
Recent advancements in large language models have significantly improved their reasoning abilities, particularly through techniques involving search and backtracking. Backtracking naturally scales test-time compute by enabling sequential, linearized exploration via long chain-of-thought (CoT) generation. However, this is not the only strategy for scaling test-time compute: parallel sampling with best-of-n selection provides an alternative that generates diverse solutions simultaneously. Despite the growing adoption of sequential search, its advantages over parallel sampling--especially under a fixed compute budget remain poorly understood. In this paper, we systematically compare these two approaches on two challenging reasoning tasks: CountDown and Sudoku. Surprisingly, we find that sequential search underperforms parallel sampling on CountDown but outperforms it on Sudoku, suggesting that backtracking is not universally beneficial. We identify two factors that can cause backtracking to degrade performance: (1) training on fixed search traces can lock models into suboptimal strategies, and (2) explicit CoT supervision can discourage "implicit" (non-verbalized) reasoning. Extending our analysis to reinforcement learning (RL), we show that models with backtracking capabilities benefit significantly from RL fine-tuning, while models without backtracking see limited, mixed gains. Together, these findings challenge the assumption that backtracking universally enhances LLM reasoning, instead revealing a complex interaction between task structure, training data, model scale, and learning paradigm.
Lifelong Benchmarks: Efficient Model Evaluation in an Era of Rapid Progress
Standardized benchmarks drive progress in machine learning. However, with repeated testing, the risk of overfitting grows as algorithms over-exploit benchmark idiosyncrasies. In our work, we seek to mitigate this challenge by compiling ever-expanding large-scale benchmarks called Lifelong Benchmarks. As exemplars of our approach, we create Lifelong-CIFAR10 and Lifelong-ImageNet, containing (for now) 1.69M and 1.98M test samples, respectively. While reducing overfitting, lifelong benchmarks introduce a key challenge: the high cost of evaluating a growing number of models across an ever-expanding sample set. To address this challenge, we also introduce an efficient evaluation framework: Sort \& Search (S&S), which reuses previously evaluated models by leveraging dynamic programming algorithms to selectively rank and sub-select test samples, enabling cost-effective lifelong benchmarking. Extensive empirical evaluations across 31,000 models demonstrate that S&S achieves highly-efficient approximate accuracy measurement, reducing compute cost from 180 GPU days to 5 GPU hours (1000x reduction) on a single A100 GPU, with low approximation error. As such, lifelong benchmarks offer a robust, practical solution to the "benchmark exhaustion" problem.
SPIN-Bench: How Well Do LLMs Plan Strategically and Reason Socially?
Reasoning and strategic behavior in social interactions is a hallmark of intelligence. This form of reasoning is significantly more sophisticated than isolated planning or reasoning tasks in static settings (e.g., math problem solving). In this paper, we present Strategic Planning, Interaction, and Negotiation (SPIN-Bench), a new multi-domain evaluation designed to measure the intelligence of strategic planning and social reasoning. While many existing benchmarks focus on narrow planning or single-agent reasoning, SPIN-Bench combines classical PDDL tasks, competitive board games, cooperative card games, and multi-agent negotiation scenarios in one unified framework. The framework includes both a benchmark as well as an arena to simulate and evaluate the variety of social settings to test reasoning and strategic behavior of AI agents. We formulate the benchmark SPIN-Bench by systematically varying action spaces, state complexity, and the number of interacting agents to simulate a variety of social settings where success depends on not only methodical and step-wise decision making, but also conceptual inference of other (adversarial or cooperative) participants. Our experiments reveal that while contemporary LLMs handle basic fact retrieval and short-range planning reasonably well, they encounter significant performance bottlenecks in tasks requiring deep multi-hop reasoning over large state spaces and socially adept coordination under uncertainty. We envision SPIN-Bench as a catalyst for future research on robust multi-agent planning, social reasoning, and human--AI teaming.
τ-bench: A Benchmark for Tool-Agent-User Interaction in Real-World Domains
Existing benchmarks do not test language agents on their interaction with human users or ability to follow domain-specific rules, both of which are vital for deploying them in real world applications. We propose tau-bench, a benchmark emulating dynamic conversations between a user (simulated by language models) and a language agent provided with domain-specific API tools and policy guidelines. We employ an efficient and faithful evaluation process that compares the database state at the end of a conversation with the annotated goal state. We also propose a new metric (pass^k) to evaluate the reliability of agent behavior over multiple trials. Our experiments show that even state-of-the-art function calling agents (like gpt-4o) succeed on <50% of the tasks, and are quite inconsistent (pass^8 <25% in retail). Our findings point to the need for methods that can improve the ability of agents to act consistently and follow rules reliably.
OptimalThinkingBench: Evaluating Over and Underthinking in LLMs
Thinking LLMs solve complex tasks at the expense of increased compute and overthinking on simpler problems, while non-thinking LLMs are faster and cheaper but underthink on harder reasoning problems. This has led to the development of separate thinking and non-thinking LLM variants, leaving the onus of selecting the optimal model for each query on the end user. In this work, we introduce OptimalThinkingBench, a unified benchmark that jointly evaluates overthinking and underthinking in LLMs and also encourages the development of optimally-thinking models that balance performance and efficiency. Our benchmark comprises two sub-benchmarks: OverthinkingBench, featuring simple queries in 72 domains, and UnderthinkingBench, containing 11 challenging reasoning tasks. Using novel thinking-adjusted accuracy metrics, we perform extensive evaluation of 33 different thinking and non-thinking models and show that no model is able to optimally think on our benchmark. Thinking models often overthink for hundreds of tokens on the simplest user queries without improving performance. In contrast, large non-thinking models underthink, often falling short of much smaller thinking models. We further explore several methods to encourage optimal thinking, but find that these approaches often improve on one sub-benchmark at the expense of the other, highlighting the need for better unified and optimal models in the future.
Bag of Tricks for Inference-time Computation of LLM Reasoning
With the advancement of large language models (LLMs), solving complex reasoning tasks has gained increasing attention. Inference-time computation methods (e.g., Best-of-N, beam search, et al.) are particularly valuable as they can enhance reasoning performance without modifying model parameters or requiring additional training. However, these techniques come with implementation challenges, and most existing methods remain at the proof-of-concept stage with limited practical adoption due to their computational complexity and varying effectiveness across different tasks. In this paper, we investigate and benchmark diverse inference-time computation strategies across reasoning tasks of varying complexity. Since most current methods rely on a proposer-verifier pipeline that first generates candidate solutions (e.g., reasoning solutions) and then selects the best one based on reward signals (e.g., RLHF rewards, process rewards), our research focuses on optimizing both candidate solution generation (e.g., instructing prompts, hyperparameters such as temperature and top-p) and reward mechanisms (e.g., self-evaluation, reward types). Through extensive experiments (more than 20,000 A100-80G GPU hours with over 1,000 experiments) across a variety of models (e.g., Llama, Qwen, and Mistral families) of various sizes, our ablation studies reveal that previously overlooked strategies can significantly enhance performance (e.g., tuning temperature can improve reasoning task performance by up to 5%). Furthermore, we establish a standardized benchmark for inference-time computation by systematically evaluating six representative methods across eight reasoning tasks. These findings provide a stronger foundation for future research. The code is available at https://github.com/usail-hkust/benchmark_inference_time_computation_LLM
TimeSeriesGym: A Scalable Benchmark for (Time Series) Machine Learning Engineering Agents
We introduce TimeSeriesGym, a scalable benchmarking framework for evaluating Artificial Intelligence (AI) agents on time series machine learning engineering challenges. Existing benchmarks lack scalability, focus narrowly on model building in well-defined settings, and evaluate only a limited set of research artifacts (e.g., CSV submission files). To make AI agent benchmarking more relevant to the practice of machine learning engineering, our framework scales along two critical dimensions. First, recognizing that effective ML engineering requires a range of diverse skills, TimeSeriesGym incorporates challenges from diverse sources spanning multiple domains and tasks. We design challenges to evaluate both isolated capabilities (including data handling, understanding research repositories, and code translation) and their combinations, and rather than addressing each challenge independently, we develop tools that support designing multiple challenges at scale. Second, we implement evaluation mechanisms for multiple research artifacts, including submission files, code, and models, using both precise numeric measures and more flexible LLM-based evaluation approaches. This dual strategy balances objective assessment with contextual judgment. Although our initial focus is on time series applications, our framework can be readily extended to other data modalities, broadly enhancing the comprehensiveness and practical utility of agentic AI evaluation. We open-source our benchmarking framework to facilitate future research on the ML engineering capabilities of AI agents.
WebGames: Challenging General-Purpose Web-Browsing AI Agents
We introduce WebGames, a comprehensive benchmark suite designed to evaluate general-purpose web-browsing AI agents through a collection of 50+ interactive challenges. These challenges are specifically crafted to be straightforward for humans while systematically testing the limitations of current AI systems across fundamental browser interactions, advanced input processing, cognitive tasks, workflow automation, and interactive entertainment. Our framework eliminates external dependencies through a hermetic testing environment, ensuring reproducible evaluation with verifiable ground-truth solutions. We evaluate leading vision-language models including GPT-4o, Claude Computer-Use, Gemini-1.5-Pro, and Qwen2-VL against human performance. Results reveal a substantial capability gap, with the best AI system achieving only 43.1% success rate compared to human performance of 95.7%, highlighting fundamental limitations in current AI systems' ability to handle common web interaction patterns that humans find intuitive. The benchmark is publicly available at webgames.convergence.ai, offering a lightweight, client-side implementation that facilitates rapid evaluation cycles. Through its modular architecture and standardized challenge specifications, WebGames provides a robust foundation for measuring progress in development of more capable web-browsing agents.
Optimizing Test-Time Compute via Meta Reinforcement Fine-Tuning
Training models to effectively use test-time compute is crucial for improving the reasoning performance of LLMs. Current methods mostly do so via fine-tuning on search traces or running RL with 0/1 outcome reward, but do these approaches efficiently utilize test-time compute? Would these approaches continue to scale as the budget improves? In this paper, we try to answer these questions. We formalize the problem of optimizing test-time compute as a meta-reinforcement learning (RL) problem, which provides a principled perspective on spending test-time compute. This perspective enables us to view the long output stream from the LLM as consisting of several episodes run at test time and leads us to use a notion of cumulative regret over output tokens as a way to measure the efficacy of test-time compute. Akin to how RL algorithms can best tradeoff exploration and exploitation over training, minimizing cumulative regret would also provide the best balance between exploration and exploitation in the token stream. While we show that state-of-the-art models do not minimize regret, one can do so by maximizing a dense reward bonus in conjunction with the outcome 0/1 reward RL. This bonus is the ''progress'' made by each subsequent block in the output stream, quantified by the change in the likelihood of eventual success. Using these insights, we develop Meta Reinforcement Fine-Tuning, or MRT, a new class of fine-tuning methods for optimizing test-time compute. MRT leads to a 2-3x relative gain in performance and roughly a 1.5x gain in token efficiency for math reasoning compared to outcome-reward RL.
Beyond Theorem Proving: Formulation, Framework and Benchmark for Formal Problem-Solving
As a seemingly self-explanatory task, problem-solving has been a significant component of science and engineering. However, a general yet concrete formulation of problem-solving itself is missing. With the recent development of AI-based problem-solving agents, the demand for process-level verifiability is rapidly increasing yet underexplored. To fill these gaps, we present a principled formulation of problem-solving as a deterministic Markov decision process; a novel framework, FPS (Formal Problem-Solving), which utilizes existing FTP (formal theorem proving) environments to perform process-verified problem-solving; and D-FPS (Deductive FPS), decoupling solving and answer verification for better human-alignment. The expressiveness, soundness and completeness of the frameworks are proven. We construct three benchmarks on problem-solving: FormalMath500, a formalization of a subset of the MATH500 benchmark; MiniF2F-Solving and PutnamBench-Solving, adaptations of FTP benchmarks MiniF2F and PutnamBench. For faithful, interpretable, and human-aligned evaluation, we propose RPE (Restricted Propositional Equivalence), a symbolic approach to determine the correctness of answers by formal verification. We evaluate four prevalent FTP models and two prompting methods as baselines, solving at most 23.77% of FormalMath500, 27.47% of MiniF2F-Solving, and 0.31% of PutnamBench-Solving.
EBES: Easy Benchmarking for Event Sequences
Event sequences, characterized by irregular sampling intervals and a mix of categorical and numerical features, are common data structures in various real-world domains such as healthcare, finance, and user interaction logs. Despite advances in temporal data modeling techniques, there is no standardized benchmarks for evaluating their performance on event sequences. This complicates result comparison across different papers due to varying evaluation protocols, potentially misleading progress in this field. We introduce EBES, a comprehensive benchmarking tool with standardized evaluation scenarios and protocols, focusing on regression and classification problems with sequence-level targets. Our library simplifies benchmarking, dataset addition, and method integration through a unified interface. It includes a novel synthetic dataset and provides preprocessed real-world datasets, including the largest publicly available banking dataset. Our results provide an in-depth analysis of datasets, identifying some as unsuitable for model comparison. We investigate the importance of modeling temporal and sequential components, as well as the robustness and scaling properties of the models. These findings highlight potential directions for future research. Our benchmark aim is to facilitate reproducible research, expediting progress and increasing real-world impacts.
Overcoming Slow Decision Frequencies in Continuous Control: Model-Based Sequence Reinforcement Learning for Model-Free Control
Reinforcement learning (RL) is rapidly reaching and surpassing human-level control capabilities. However, state-of-the-art RL algorithms often require timesteps and reaction times significantly faster than human capabilities, which is impractical in real-world settings and typically necessitates specialized hardware. Such speeds are difficult to achieve in the real world and often requires specialized hardware. We introduce Sequence Reinforcement Learning (SRL), an RL algorithm designed to produce a sequence of actions for a given input state, enabling effective control at lower decision frequencies. SRL addresses the challenges of learning action sequences by employing both a model and an actor-critic architecture operating at different temporal scales. We propose a "temporal recall" mechanism, where the critic uses the model to estimate intermediate states between primitive actions, providing a learning signal for each individual action within the sequence. Once training is complete, the actor can generate action sequences independently of the model, achieving model-free control at a slower frequency. We evaluate SRL on a suite of continuous control tasks, demonstrating that it achieves performance comparable to state-of-the-art algorithms while significantly reducing actor sample complexity. To better assess performance across varying decision frequencies, we introduce the Frequency-Averaged Score (FAS) metric. Our results show that SRL significantly outperforms traditional RL algorithms in terms of FAS, making it particularly suitable for applications requiring variable decision frequencies. Additionally, we compare SRL with model-based online planning, showing that SRL achieves superior FAS while leveraging the same model during training that online planners use for planning.
Decision Trees That Remember: Gradient-Based Learning of Recurrent Decision Trees with Memory
Neural architectures such as Recurrent Neural Networks (RNNs), Transformers, and State-Space Models have shown great success in handling sequential data by learning temporal dependencies. Decision Trees (DTs), on the other hand, remain a widely used class of models for structured tabular data but are typically not designed to capture sequential patterns directly. Instead, DT-based approaches for time-series data often rely on feature engineering, such as manually incorporating lag features, which can be suboptimal for capturing complex temporal dependencies. To address this limitation, we introduce ReMeDe Trees, a novel recurrent DT architecture that integrates an internal memory mechanism, similar to RNNs, to learn long-term dependencies in sequential data. Our model learns hard, axis-aligned decision rules for both output generation and state updates, optimizing them efficiently via gradient descent. We provide a proof-of-concept study on synthetic benchmarks to demonstrate the effectiveness of our approach.
TextQuests: How Good are LLMs at Text-Based Video Games?
Evaluating AI agents within complex, interactive environments that mirror real-world challenges is critical for understanding their practical capabilities. While existing agent benchmarks effectively assess skills like tool use or performance on structured tasks, they often do not fully capture an agent's ability to operate autonomously in exploratory environments that demand sustained, self-directed reasoning over a long and growing context. To spur the development of agents capable of more robust intrinsic reasoning over long horizons, we introduce TextQuests, a benchmark based on the Infocom suite of interactive fiction games. These text-based adventures, which can take human players over 30 hours and require hundreds of precise actions to solve, serve as an effective proxy for evaluating AI agents on focused, stateful tasks. The benchmark is specifically designed to assess an LLM agent's capacity for self-contained problem-solving by precluding the use of external tools, thereby focusing on intrinsic long-context reasoning capabilities in an exploratory environment characterized by the need for trial-and-error learning and sustained problem-solving within a single interactive session. We release TextQuests at https://textquests.ai.
Hindsight Learning for MDPs with Exogenous Inputs
Many resource management problems require sequential decision-making under uncertainty, where the only uncertainty affecting the decision outcomes are exogenous variables outside the control of the decision-maker. We model these problems as Exo-MDPs (Markov Decision Processes with Exogenous Inputs) and design a class of data-efficient algorithms for them termed Hindsight Learning (HL). Our HL algorithms achieve data efficiency by leveraging a key insight: having samples of the exogenous variables, past decisions can be revisited in hindsight to infer counterfactual consequences that can accelerate policy improvements. We compare HL against classic baselines in the multi-secretary and airline revenue management problems. We also scale our algorithms to a business-critical cloud resource management problem -- allocating Virtual Machines (VMs) to physical machines, and simulate their performance with real datasets from a large public cloud provider. We find that HL algorithms outperform domain-specific heuristics, as well as state-of-the-art reinforcement learning methods.
Efficient Benchmarking (of Language Models)
The increasing versatility of language models LMs has given rise to a new class of benchmarks that comprehensively assess a broad range of capabilities. Such benchmarks are associated with massive computational costs reaching thousands of GPU hours per model. However the efficiency aspect of these evaluation efforts had raised little discussion in the literature. In this work we present the problem of Efficient Benchmarking namely intelligently reducing the computation costs of LM evaluation without compromising reliability. Using the HELM benchmark as a test case we investigate how different benchmark design choices affect the computation-reliability tradeoff. We propose to evaluate the reliability of such decisions by using a new measure Decision Impact on Reliability DIoR for short. We find for example that the current leader on HELM may change by merely removing a low-ranked model from the benchmark and observe that a handful of examples suffice to obtain the correct benchmark ranking. Conversely a slightly different choice of HELM scenarios varies ranking widely. Based on our findings we outline a set of concrete recommendations for more efficient benchmark design and utilization practices leading to dramatic cost savings with minimal loss of benchmark reliability often reducing computation by x100 or more.
STEER-ME: Assessing the Microeconomic Reasoning of Large Language Models
How should one judge whether a given large language model (LLM) can reliably perform economic reasoning? Most existing LLM benchmarks focus on specific applications and fail to present the model with a rich variety of economic tasks. A notable exception is Raman et al. [2024], who offer an approach for comprehensively benchmarking strategic decision-making; however, this approach fails to address the non-strategic settings prevalent in microeconomics, such as supply-and-demand analysis. We address this gap by taxonomizing microeconomic reasoning into 58 distinct elements, focusing on the logic of supply and demand, each grounded in up to 10 distinct domains, 5 perspectives, and 3 types. The generation of benchmark data across this combinatorial space is powered by a novel LLM-assisted data generation protocol that we dub auto-STEER, which generates a set of questions by adapting handwritten templates to target new domains and perspectives. Because it offers an automated way of generating fresh questions, auto-STEER mitigates the risk that LLMs will be trained to over-fit evaluation benchmarks; we thus hope that it will serve as a useful tool both for evaluating and fine-tuning models for years to come. We demonstrate the usefulness of our benchmark via a case study on 27 LLMs, ranging from small open-source models to the current state of the art. We examined each model's ability to solve microeconomic problems across our whole taxonomy and present the results across a range of prompting strategies and scoring metrics.
STEPWISE-CODEX-Bench: Evaluating Complex Multi-Function Comprehension and Fine-Grained Execution Reasoning
In recent years, large language models (LLMs) have made significant progress in code intelligence, yet systematically evaluating their code understanding and reasoning abilities remains challenging. Mainstream benchmarks such as HumanEval and MBPP primarily assess functional correctness, while reasoning benchmarks like CRUXEVAL are limited to single-function, low-complexity scenarios. As a result, advanced models achieve nearly saturated scores, limiting their discriminative power. To address this, we present STEPWISE-CODEX-Bench (SX-Bench), a novel benchmark designed for complex multi-function understanding and fine-grained execution reasoning. SX-Bench features tasks involving collaboration among multiple sub-functions (e.g., chained calls, nested loops), shifting evaluation towards overall control and data flow modeling. It defines "computation steps" as the minimal execution unit and requires models to predict the total number of steps in reasoning tasks, thereby assessing a model's in-depth understanding of dynamic execution beyond simple I/O matching. Evaluation on over 20 mainstream models (including 14 reasoning-enhanced models) demonstrates that SX-Bench is highly discriminative: even the state-of-the-art OpenAI-O3 achieves only 78.37 percent accuracy on Hard-Reasoning tasks, much lower than its saturated scores on previous benchmarks, thereby revealing bottlenecks in complex and fine-grained reasoning. We also release an automated pipeline combining program synthesis, symbolic execution, and LLM-aided validation for efficient benchmark generation and quality assurance. SX-Bench advances code evaluation from "single-function verification" to "multi-function dynamic reasoning," providing a key tool for the in-depth assessment of advanced code intelligence models.
Vote'n'Rank: Revision of Benchmarking with Social Choice Theory
The development of state-of-the-art systems in different applied areas of machine learning (ML) is driven by benchmarks, which have shaped the paradigm of evaluating generalisation capabilities from multiple perspectives. Although the paradigm is shifting towards more fine-grained evaluation across diverse tasks, the delicate question of how to aggregate the performances has received particular interest in the community. In general, benchmarks follow the unspoken utilitarian principles, where the systems are ranked based on their mean average score over task-specific metrics. Such aggregation procedure has been viewed as a sub-optimal evaluation protocol, which may have created the illusion of progress. This paper proposes Vote'n'Rank, a framework for ranking systems in multi-task benchmarks under the principles of the social choice theory. We demonstrate that our approach can be efficiently utilised to draw new insights on benchmarking in several ML sub-fields and identify the best-performing systems in research and development case studies. The Vote'n'Rank's procedures are more robust than the mean average while being able to handle missing performance scores and determine conditions under which the system becomes the winner.
ALE-Bench: A Benchmark for Long-Horizon Objective-Driven Algorithm Engineering
How well do AI systems perform in algorithm engineering for hard optimization problems in domains such as package-delivery routing, crew scheduling, factory production planning, and power-grid balancing? We introduce ALE-Bench, a new benchmark for evaluating AI systems on score-based algorithmic programming contests. Drawing on real tasks from the AtCoder Heuristic Contests, ALE-Bench presents optimization problems that are computationally hard and admit no known exact solution. Unlike short-duration, pass/fail coding benchmarks, ALE-Bench encourages iterative solution refinement over long time horizons. Our software framework supports interactive agent architectures that leverage test-run feedback and visualizations. Our evaluation of frontier LLMs revealed that while they demonstrate high performance on specific problems, a notable gap remains compared to humans in terms of consistency across problems and long-horizon problem-solving capabilities. This highlights the need for this benchmark to foster future AI advancements.
TMGBench: A Systematic Game Benchmark for Evaluating Strategic Reasoning Abilities of LLMs
The rapid advancement of large language models (LLMs) has accelerated their application in reasoning, with strategic reasoning drawing increasing attention. To evaluate LLMs' strategic reasoning capabilities, game theory, with its concise structure, has become a preferred approach. However, current research focuses on a limited selection of games, resulting in low coverage. Classic game scenarios risk data leakage, and existing benchmarks often lack extensibility, making them inadequate for evaluating state-of-the-art models. To address these challenges, we propose TMGBench, a benchmark with comprehensive game type coverage, novel scenarios, and flexible organization. Specifically, we incorporate all 144 game types summarized by the Robinson-Goforth topology of 2x2 games, constructed as classic games. We also employ synthetic data generation to create diverse, higher-quality scenarios through topic guidance and human inspection, referred to as story-based games. Lastly, we provide a sustainable framework for increasingly powerful LLMs by treating these games as atomic units and organizing them into more complex forms via sequential, parallel, and nested structures. Our comprehensive evaluation of mainstream LLMs covers tests on rational reasoning, robustness, Theory-of-Mind (ToM), and reasoning in complex forms. Results reveal flaws in accuracy, consistency, and varying mastery of ToM. Additionally, o1-mini, OpenAI's latest reasoning model, achieved accuracy rates of 66.6%, 60.0%, and 70.0% on sequential, parallel, and nested games, highlighting TMGBench's challenges.
Open RL Benchmark: Comprehensive Tracked Experiments for Reinforcement Learning
In many Reinforcement Learning (RL) papers, learning curves are useful indicators to measure the effectiveness of RL algorithms. However, the complete raw data of the learning curves are rarely available. As a result, it is usually necessary to reproduce the experiments from scratch, which can be time-consuming and error-prone. We present Open RL Benchmark, a set of fully tracked RL experiments, including not only the usual data such as episodic return, but also all algorithm-specific and system metrics. Open RL Benchmark is community-driven: anyone can download, use, and contribute to the data. At the time of writing, more than 25,000 runs have been tracked, for a cumulative duration of more than 8 years. Open RL Benchmark covers a wide range of RL libraries and reference implementations. Special care is taken to ensure that each experiment is precisely reproducible by providing not only the full parameters, but also the versions of the dependencies used to generate it. In addition, Open RL Benchmark comes with a command-line interface (CLI) for easy fetching and generating figures to present the results. In this document, we include two case studies to demonstrate the usefulness of Open RL Benchmark in practice. To the best of our knowledge, Open RL Benchmark is the first RL benchmark of its kind, and the authors hope that it will improve and facilitate the work of researchers in the field.
BALROG: Benchmarking Agentic LLM and VLM Reasoning On Games
Large Language Models (LLMs) and Vision Language Models (VLMs) possess extensive knowledge and exhibit promising reasoning abilities; however, they still struggle to perform well in complex, dynamic environments. Real-world tasks require handling intricate interactions, advanced spatial reasoning, long-term planning, and continuous exploration of new strategies-areas in which we lack effective methodologies for comprehensively evaluating these capabilities. To address this gap, we introduce BALROG, a novel benchmark designed to assess the agentic capabilities of LLMs and VLMs through a diverse set of challenging games. Our benchmark incorporates a range of existing reinforcement learning environments with varying levels of difficulty, including tasks that are solvable by non-expert humans in seconds to extremely challenging ones that may take years to master (e.g., the NetHack Learning Environment). We devise fine-grained metrics to measure performance and conduct an extensive evaluation of several popular open-source and closed-source LLMs and VLMs. Our findings indicate that while current models achieve partial success in the easier games, they struggle significantly with more challenging tasks. Notably, we observe severe deficiencies in vision-based decision-making, as models perform worse when visual representations of the environments are provided. We release BALROG as an open and user-friendly benchmark to facilitate future research and development in the agentic community.
StockBench: Can LLM Agents Trade Stocks Profitably In Real-world Markets?
Large language models (LLMs) have recently demonstrated strong capabilities as autonomous agents, showing promise in reasoning, tool use, and sequential decision-making. While prior benchmarks have evaluated LLM agents in domains such as software engineering and scientific discovery, the finance domain remains underexplored, despite its direct relevance to economic value and high-stakes decision-making. Existing financial benchmarks primarily test static knowledge through question answering, but they fall short of capturing the dynamic and iterative nature of trading. To address this gap, we introduce StockBench, a contamination-free benchmark designed to evaluate LLM agents in realistic, multi-month stock trading environments. Agents receive daily market signals -- including prices, fundamentals, and news -- and must make sequential buy, sell, or hold decisions. Performance is assessed using financial metrics such as cumulative return, maximum drawdown, and the Sortino ratio. Our evaluation of state-of-the-art proprietary (e.g., GPT-5, Claude-4) and open-weight (e.g., Qwen3, Kimi-K2, GLM-4.5) models shows that while most LLM agents struggle to outperform the simple buy-and-hold baseline, several models demonstrate the potential to deliver higher returns and manage risk more effectively. These findings highlight both the challenges and opportunities in developing LLM-powered financial agents, showing that excelling at static financial knowledge tasks does not necessarily translate into successful trading strategies. We release StockBench as an open-source resource to support reproducibility and advance future research in this domain.
BenchmarkCards: Standardized Documentation for Large Language Model Benchmarks
Large language models (LLMs) are powerful tools capable of handling diverse tasks. Comparing and selecting appropriate LLMs for specific tasks requires systematic evaluation methods, as models exhibit varying capabilities across different domains. However, finding suitable benchmarks is difficult given the many available options. This complexity not only increases the risk of benchmark misuse and misinterpretation but also demands substantial effort from LLM users, seeking the most suitable benchmarks for their specific needs. To address these issues, we introduce BenchmarkCards, an intuitive and validated documentation framework that standardizes critical benchmark attributes such as objectives, methodologies, data sources, and limitations. Through user studies involving benchmark creators and users, we show that BenchmarkCards can simplify benchmark selection and enhance transparency, facilitating informed decision-making in evaluating LLMs. Data & Code: https://github.com/SokolAnn/BenchmarkCards
Signal and Noise: A Framework for Reducing Uncertainty in Language Model Evaluation
Developing large language models is expensive and involves making decisions with small experiments, typically by evaluating on large, multi-task evaluation suites. In this work, we analyze specific properties which make a benchmark more reliable for such decisions, and interventions to design higher-quality evaluation benchmarks. We introduce two key metrics that show differences in current benchmarks: signal, a benchmark's ability to separate better models from worse models, and noise, a benchmark's sensitivity to random variability between training steps. We demonstrate that benchmarks with a better signal-to-noise ratio are more reliable when making decisions at small scale, and those with less noise have lower scaling law prediction error. These results suggest that improving signal or noise will lead to more useful benchmarks, so we introduce three interventions designed to directly affect signal or noise. For example, we propose that switching to a metric that has better signal and noise (e.g., perplexity rather than accuracy) leads to better reliability and improved scaling law error. We also find that filtering noisy subtasks, to improve an aggregate signal-to-noise ratio, leads to more reliable multi-task evaluations. We also find that averaging the output of a model's intermediate checkpoints to reduce noise leads to consistent improvements. We conclude by recommending that those creating new benchmarks, or selecting which existing benchmarks to use, aim for high signal and low noise. We use 30 benchmarks for these experiments, and 375 open-weight language models from 60M to 32B parameters, resulting in a new, publicly available dataset of 900K evaluation benchmark results, totaling 200M instances.
Optimizing Attention and Cognitive Control Costs Using Temporally-Layered Architectures
The current reinforcement learning framework focuses exclusively on performance, often at the expense of efficiency. In contrast, biological control achieves remarkable performance while also optimizing computational energy expenditure and decision frequency. We propose a Decision Bounded Markov Decision Process (DB-MDP), that constrains the number of decisions and computational energy available to agents in reinforcement learning environments. Our experiments demonstrate that existing reinforcement learning algorithms struggle within this framework, leading to either failure or suboptimal performance. To address this, we introduce a biologically-inspired, Temporally Layered Architecture (TLA), enabling agents to manage computational costs through two layers with distinct time scales and energy requirements. TLA achieves optimal performance in decision-bounded environments and in continuous control environments, it matches state-of-the-art performance while utilizing a fraction of the compute cost. Compared to current reinforcement learning algorithms that solely prioritize performance, our approach significantly lowers computational energy expenditure while maintaining performance. These findings establish a benchmark and pave the way for future research on energy and time-aware control.
NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios
Offline reinforcement learning (RL) aims to learn from historical data without requiring (costly) access to the environment. To facilitate offline RL research, we previously introduced NeoRL, which highlighted that datasets from real-world tasks are often conservative and limited. With years of experience applying offline RL to various domains, we have identified additional real-world challenges. These include extremely conservative data distributions produced by deployed control systems, delayed action effects caused by high-latency transitions, external factors arising from the uncontrollable variance of transitions, and global safety constraints that are difficult to evaluate during the decision-making process. These challenges are underrepresented in previous benchmarks but frequently occur in real-world tasks. To address this, we constructed the extended Near Real-World Offline RL Benchmark (NeoRL-2), which consists of 7 datasets from 7 simulated tasks along with their corresponding evaluation simulators. Benchmarking results from state-of-the-art offline RL approaches demonstrate that current methods often struggle to outperform the data-collection behavior policy, highlighting the need for more effective methods. We hope NeoRL-2 will accelerate the development of reinforcement learning algorithms for real-world applications. The benchmark project page is available at https://github.com/polixir/NeoRL2.
BENCHAGENTS: Automated Benchmark Creation with Agent Interaction
Evaluations are limited by benchmark availability. As models evolve, there is a need to create benchmarks that can measure progress on new generative capabilities. However, creating new benchmarks through human annotations is slow and expensive, restricting comprehensive evaluations for any capability. We introduce BENCHAGENTS, a framework that methodically leverages large language models (LLMs) to automate benchmark creation for complex capabilities while inherently ensuring data and metric quality. BENCHAGENTS decomposes the benchmark creation process into planning, generation, data verification, and evaluation, each of which is executed by an LLM agent. These agents interact with each other and utilize human-in-the-loop feedback from benchmark developers to explicitly improve and flexibly control data diversity and quality. We use BENCHAGENTS to create benchmarks to evaluate capabilities related to planning and constraint satisfaction during text generation. We then use these benchmarks to study seven state-of-the-art models and extract new insights on common failure modes and model differences.
S1-Bench: A Simple Benchmark for Evaluating System 1 Thinking Capability of Large Reasoning Models
We introduce S1-Bench, a novel benchmark designed to evaluate Large Reasoning Models' (LRMs) performance on simple tasks that favor intuitive system 1 thinking rather than deliberative system 2 reasoning. While LRMs have achieved significant breakthroughs in complex reasoning tasks through explicit chains of thought, their reliance on deep analytical thinking may limit their system 1 thinking capabilities. Moreover, a lack of benchmark currently exists to evaluate LRMs' performance in tasks that require such capabilities. To fill this gap, S1-Bench presents a set of simple, diverse, and naturally clear questions across multiple domains and languages, specifically designed to assess LRMs' performance in such tasks. Our comprehensive evaluation of 22 LRMs reveals significant lower efficiency tendencies, with outputs averaging 15.5 times longer than those of traditional small LLMs. Additionally, LRMs often identify correct answers early but continue unnecessary deliberation, with some models even producing numerous errors. These findings highlight the rigid reasoning patterns of current LRMs and underscore the substantial development needed to achieve balanced dual-system thinking capabilities that can adapt appropriately to task complexity.
The Update-Equivalence Framework for Decision-Time Planning
The process of revising (or constructing) a policy at execution time -- known as decision-time planning -- has been key to achieving superhuman performance in perfect-information games like chess and Go. A recent line of work has extended decision-time planning to imperfect-information games, leading to superhuman performance in poker. However, these methods involve solving subgames whose sizes grow quickly in the amount of non-public information, making them unhelpful when the amount of non-public information is large. Motivated by this issue, we introduce an alternative framework for decision-time planning that is not based on solving subgames, but rather on update equivalence. In this update-equivalence framework, decision-time planning algorithms replicate the updates of last-iterate algorithms, which need not rely on public information. This facilitates scalability to games with large amounts of non-public information. Using this framework, we derive a provably sound search algorithm for fully cooperative games based on mirror descent and a search algorithm for adversarial games based on magnetic mirror descent. We validate the performance of these algorithms in cooperative and adversarial domains, notably in Hanabi, the standard benchmark for search in fully cooperative imperfect-information games. Here, our mirror descent approach exceeds or matches the performance of public information-based search while using two orders of magnitude less search time. This is the first instance of a non-public-information-based algorithm outperforming public-information-based approaches in a domain they have historically dominated.
PhD Knowledge Not Required: A Reasoning Challenge for Large Language Models
Existing benchmarks for frontier models often test specialized, ``PhD-level'' knowledge that is difficult for non-experts to grasp. In contrast, we present a benchmark based on the NPR Sunday Puzzle Challenge that requires only general knowledge. Our benchmark is challenging for both humans and models, however correct solutions are easy to verify, and models' mistakes are easy to spot. Our work reveals capability gaps that are not evident in existing benchmarks: OpenAI o1 significantly outperforms other reasoning models that are on par on benchmarks that test specialized knowledge. Furthermore, our analysis of reasoning outputs uncovers new kinds of failures. DeepSeek R1, for instance, often concedes with ``I give up'' before providing an answer that it knows is wrong. R1 can also be remarkably ``uncertain'' in its output and in rare cases, it does not ``finish thinking,'' which suggests the need for an inference-time technique to ``wrap up'' before the context window limit is reached. We also quantify the effectiveness of reasoning longer with R1 and Gemini Thinking to identify the point beyond which more reasoning is unlikely to improve accuracy on our benchmark.
Establishing Best Practices for Building Rigorous Agentic Benchmarks
Benchmarks are essential for quantitatively tracking progress in AI. As AI agents become increasingly capable, researchers and practitioners have introduced agentic benchmarks to evaluate agents on complex, real-world tasks. These benchmarks typically measure agent capabilities by evaluating task outcomes via specific reward designs. However, we show that many agentic benchmarks have issues task setup or reward design. For example, SWE-bench Verified uses insufficient test cases, while TAU-bench counts empty responses as successful. Such issues can lead to under- or overestimation agents' performance by up to 100% in relative terms. To make agentic evaluation rigorous, we introduce the Agentic Benchmark Checklist (ABC), a set of guidelines that we synthesized from our benchmark-building experience, a survey of best practices, and previously reported issues. When applied to CVE-Bench, a benchmark with a particularly complex evaluation design, ABC reduces the performance overestimation by 33%.
Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1
Recent advancements in Chain of Thought (COT) generation have significantly improved the reasoning capabilities of Large Language Models (LLMs), with reinforcement learning (RL) emerging as an effective post-training approach. Multimodal Large Language Models (MLLMs) inherit this reasoning potential but remain underexplored in tasks requiring both perception and logical reasoning. To address this, we introduce SEED-Bench-R1, a benchmark designed to systematically evaluate post-training methods for MLLMs in video understanding. It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions, requiring sophisticated perception and reasoning. SEED-Bench-R1 assesses generalization through a three-level hierarchy: in-distribution, cross-environment, and cross-environment-task scenarios, equipped with a large-scale training dataset with easily verifiable ground-truth answers. Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT), demonstrating RL's data efficiency and superior performance on both in-distribution and out-of-distribution tasks, even outperforming SFT on general video understanding benchmarks like LongVideoBench. Our detailed analysis reveals that RL enhances visual perception but often produces less logically coherent reasoning chains. We identify key limitations such as inconsistent reasoning and overlooked visual cues, and suggest future improvements in base model reasoning, reward modeling, and RL robustness against noisy signals.
Inference-Time Computations for LLM Reasoning and Planning: A Benchmark and Insights
We examine the reasoning and planning capabilities of large language models (LLMs) in solving complex tasks. Recent advances in inference-time techniques demonstrate the potential to enhance LLM reasoning without additional training by exploring intermediate steps during inference. Notably, OpenAI's o1 model shows promising performance through its novel use of multi-step reasoning and verification. Here, we explore how scaling inference-time techniques can improve reasoning and planning, focusing on understanding the tradeoff between computational cost and performance. To this end, we construct a comprehensive benchmark, known as Sys2Bench, and perform extensive experiments evaluating existing inference-time techniques on eleven diverse tasks across five categories, including arithmetic reasoning, logical reasoning, common sense reasoning, algorithmic reasoning, and planning. Our findings indicate that simply scaling inference-time computation has limitations, as no single inference-time technique consistently performs well across all reasoning and planning tasks.
MR-BEN: A Comprehensive Meta-Reasoning Benchmark for Large Language Models
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making, largely based on the step-by-step chain-of-thought reasoning processes. However, it has been increasingly challenging to evaluate the reasoning capability of LLMs. Concretely, existing outcome-based benchmarks begin to saturate and become less sufficient to monitor the progress. To this end, we present a process-based benchmark MR-BEN that demands a meta reasoning skill, where LMs are asked to locate and analyse potential errors in automatically generated reasoning steps. MR-BEN is a comprehensive benchmark comprising 5,975 questions collected from human experts, covering various subjects such as physics, chemistry, logic, coding, and more. Through our designed metrics for assessing meta-reasoning on this benchmark, we identify interesting limitations and weaknesses of current LLMs (open-source and closed-source models). For example, open-source models are seemingly comparable to GPT-4 on outcome-based benchmarks, but they lag far behind on our benchmark, revealing the underlying reasoning capability gap between them. Our dataset and codes are available on https://randolph-zeng.github.io/Mr-Ben.github.io/.
FinChain: A Symbolic Benchmark for Verifiable Chain-of-Thought Financial Reasoning
Multi-step symbolic reasoning is critical for advancing downstream performance on financial tasks. Yet, benchmarks for systematically evaluating this capability are lacking. Existing datasets like FinQA and ConvFinQA supervise only final numerical answers, without assessing intermediate reasoning steps. To address this, we introduce FinChain, the first symbolic benchmark designed for verifiable Chain-of- Thought (CoT) financial reasoning. Spanning 54 topics across 12 financial domains, Fin- Chain offers five parameterized templates per topic, each varying in reasoning complexity and domain expertise required. Each dataset instance includes an executable Python trace, enabling automatic generation of extensive training data and easy adaptation to other domains. We also introduce ChainEval, a new metric for automatic evaluation of both final answers and intermediate reasoning. Benchmarking 30 LLMs on our dataset, we find that even state-of-the-art models have considerable room for improvement in multi-step financial reasoning. All templates and evaluation metrics for FinChain are available at https: //github.com/mbzuai-nlp/finchain.
DICE-BENCH: Evaluating the Tool-Use Capabilities of Large Language Models in Multi-Round, Multi-Party Dialogues
Existing function-calling benchmarks focus on single-turn interactions. However, they overlook the complexity of real-world scenarios. To quantify how existing benchmarks address practical applications, we introduce DICE-SCORE, a metric that evaluates the dispersion of tool-related information such as function name and parameter values throughout the dialogue. Analyzing existing benchmarks through DICE-SCORE reveals notably low scores, highlighting the need for more realistic scenarios. To address this gap, we present DICE-BENCH, a framework that constructs practical function-calling datasets by synthesizing conversations through a tool graph that maintains dependencies across rounds and a multi-agent system with distinct personas to enhance dialogue naturalness. The final dataset comprises 1,607 high-DICE-SCORE instances. Our experiments on 19 LLMs with DICE-BENCH show that significant advances are still required before such models can be deployed effectively in real-world settings. Our code and data are all publicly available: https://snuhcc.github.io/DICE-Bench/.
StatEval: A Comprehensive Benchmark for Large Language Models in Statistics
Large language models (LLMs) have demonstrated remarkable advances in mathematical and logical reasoning, yet statistics, as a distinct and integrative discipline, remains underexplored in benchmarking efforts. To address this gap, we introduce StatEval, the first comprehensive benchmark dedicated to statistics, spanning both breadth and depth across difficulty levels. StatEval consists of 13,817 foundational problems covering undergraduate and graduate curricula, together with 2374 research-level proof tasks extracted from leading journals. To construct the benchmark, we design a scalable multi-agent pipeline with human-in-the-loop validation that automates large-scale problem extraction, rewriting, and quality control, while ensuring academic rigor. We further propose a robust evaluation framework tailored to both computational and proof-based tasks, enabling fine-grained assessment of reasoning ability. Experimental results reveal that while closed-source models such as GPT5-mini achieve below 57\% on research-level problems, with open-source models performing significantly lower. These findings highlight the unique challenges of statistical reasoning and the limitations of current LLMs. We expect StatEval to serve as a rigorous benchmark for advancing statistical intelligence in large language models. All data and code are available on our web platform: https://stateval.github.io/.
PlanRAG: A Plan-then-Retrieval Augmented Generation for Generative Large Language Models as Decision Makers
In this paper, we conduct a study to utilize LLMs as a solution for decision making that requires complex data analysis. We define Decision QA as the task of answering the best decision, d_{best}, for a decision-making question Q, business rules R and a database D. Since there is no benchmark that can examine Decision QA, we propose Decision QA benchmark, DQA. It has two scenarios, Locating and Building, constructed from two video games (Europa Universalis IV and Victoria 3) that have almost the same goal as Decision QA. To address Decision QA effectively, we also propose a new RAG technique called the iterative plan-then-retrieval augmented generation (PlanRAG). Our PlanRAG-based LM generates the plan for decision making as the first step, and the retriever generates the queries for data analysis as the second step. The proposed method outperforms the state-of-the-art iterative RAG method by 15.8% in the Locating scenario and by 7.4% in the Building scenario, respectively. We release our code and benchmark at https://github.com/myeon9h/PlanRAG.
TTT-Bench: A Benchmark for Evaluating Reasoning Ability with Simple and Novel Tic-Tac-Toe-style Games
Large reasoning models (LRMs) have demonstrated impressive reasoning capabilities across a broad range of tasks including Olympiad-level mathematical problems, indicating evidence of their complex reasoning abilities. While many reasoning benchmarks focus on the STEM domain, the ability of LRMs to reason correctly in broader task domains remains underexplored. In this work, we introduce TTT-Bench, a new benchmark that is designed to evaluate basic strategic, spatial, and logical reasoning abilities in LRMs through a suite of four two-player Tic-Tac-Toe-style games that humans can effortlessly solve from a young age. We propose a simple yet scalable programmatic approach for generating verifiable two-player game problems for TTT-Bench. Although these games are trivial for humans, they require reasoning about the intentions of the opponent, as well as the game board's spatial configurations, to ensure a win. We evaluate a diverse set of state-of-the-art LRMs, and discover that the models that excel at hard math problems frequently fail at these simple reasoning games. Further testing reveals that our evaluated reasoning models score on average downarrow 41\% \& downarrow 5\% lower on TTT-Bench compared to MATH 500 \& AIME 2024 respectively, with larger models achieving higher performance using shorter reasoning traces, where most of the models struggle on long-term strategic reasoning situations on simple and new TTT-Bench tasks.
Restarted Bayesian Online Change-point Detection for Non-Stationary Markov Decision Processes
We consider the problem of learning in a non-stationary reinforcement learning (RL) environment, where the setting can be fully described by a piecewise stationary discrete-time Markov decision process (MDP). We introduce a variant of the Restarted Bayesian Online Change-Point Detection algorithm (R-BOCPD) that operates on input streams originating from the more general multinomial distribution and provides near-optimal theoretical guarantees in terms of false-alarm rate and detection delay. Based on this, we propose an improved version of the UCRL2 algorithm for MDPs with state transition kernel sampled from a multinomial distribution, which we call R-BOCPD-UCRL2. We perform a finite-time performance analysis and show that R-BOCPD-UCRL2 enjoys a favorable regret bound of Oleft(D O A T K_T logleft (frac{T{delta} right) + K_T log frac{K_T{delta}}{minlimits_ell : KLleft( {theta^{(ell+1)}}midmathbf{theta^{(ell)}}right)}}right), where D is the largest MDP diameter from the set of MDPs defining the piecewise stationary MDP setting, O is the finite number of states (constant over all changes), A is the finite number of actions (constant over all changes), K_T is the number of change points up to horizon T, and theta^{(ell)} is the transition kernel during the interval [c_ell, c_{ell+1}), which we assume to be multinomially distributed over the set of states O. Interestingly, the performance bound does not directly scale with the variation in MDP state transition distributions and rewards, ie. can also model abrupt changes. In practice, R-BOCPD-UCRL2 outperforms the state-of-the-art in a variety of scenarios in synthetic environments. We provide a detailed experimental setup along with a code repository (upon publication) that can be used to easily reproduce our experiments.
ACPBench: Reasoning about Action, Change, and Planning
There is an increasing body of work using Large Language Models (LLMs) as agents for orchestrating workflows and making decisions in domains that require planning and multi-step reasoning. As a result, it is imperative to evaluate LLMs on core skills required for planning. In this work, we present ACPBench, a benchmark for evaluating the reasoning tasks in the field of planning. The benchmark consists of 7 reasoning tasks over 13 planning domains. The collection is constructed from planning domains described in a formal language. This allows us to synthesize problems with provably correct solutions across many tasks and domains. Further, it allows us the luxury of scale without additional human effort, i.e., many additional problems can be created automatically. Our extensive evaluation of 22 open-sourced and frontier LLMs highlight the significant gap in the reasoning capability of the LLMs. The average accuracy of one of the best-performing frontier LLMs -- GPT-4o on these tasks can fall as low as 52.50% ACPBench collection is available at https://ibm.github.io/ACPBench.
Automating Benchmark Design
The rapid progress and widespread deployment of LLMs and LLM-powered agents has outpaced our ability to evaluate them. Hand-crafted, static benchmarks are the primary tool for assessing model capabilities, but these quickly become saturated. In contrast, dynamic benchmarks evolve alongside the models they evaluate, but are expensive to create and continuously update. To address these challenges, we develop BeTaL (Benchmark Tuning with an LLM-in-the-loop), a framework that leverages environment design principles to automate the process of dynamic benchmark design. BeTaL works by parameterizing key design choices in base benchmark templates and uses LLMs to reason through the resulting parameter space to obtain target properties (such as difficulty and realism) in a cost-efficient manner. We validate this approach on its ability to create benchmarks with desired difficulty levels. Using BeTaL, we create two new benchmarks and extend a popular agentic benchmark tau-bench. Extensive evaluation on these three tasks and multiple target difficulty levels shows that BeTaL produces benchmarks much closer to the desired difficulty, with average deviations ranging from 5.3% to 13.2% -- a 2-4x improvement over the baselines.
UniREditBench: A Unified Reasoning-based Image Editing Benchmark
Recent advances in multi-modal generative models have driven substantial improvements in image editing. However, current generative models still struggle with handling diverse and complex image editing tasks that require implicit reasoning, underscoring the need for a comprehensive benchmark to systematically assess their performance across various reasoning scenarios. Existing benchmarks primarily focus on single-object attribute transformation in realistic scenarios, which, while effective, encounter two key challenges: (1) they largely overlook multi-object interactions as well as game-world scenarios that involve human-defined rules, which are common in real-life applications; (2) they only rely on textual references to evaluate the generated images, potentially leading to systematic misjudgments, especially in complex reasoning scenarios. To this end, this work proposes UniREditBench, a unified benchmark for reasoning-based image editing evaluation. It comprises 2,700 meticulously curated samples, covering both real- and game-world scenarios across 8 primary dimensions and 18 sub-dimensions. To improve evaluation reliability, we introduce multimodal dual-reference evaluation, providing both textual and ground-truth image references for each sample assessment. Furthermore, we design an automated multi-scenario data synthesis pipeline and construct UniREdit-Data-100K, a large-scale synthetic dataset with high-quality chain-of-thought (CoT) reasoning annotations. We fine-tune Bagel on this dataset and develop UniREdit-Bagel, demonstrating substantial improvements in both in-domain and out-of-distribution settings. Through thorough benchmarking of both open-source and closed-source image editing models, we reveal their strengths and weaknesses across various aspects.
EconLogicQA: A Question-Answering Benchmark for Evaluating Large Language Models in Economic Sequential Reasoning
In this paper, we introduce EconLogicQA, a rigorous benchmark designed to assess the sequential reasoning capabilities of large language models (LLMs) within the intricate realms of economics, business, and supply chain management. Diverging from traditional benchmarks that predict subsequent events individually, EconLogicQA poses a more challenging task: it requires models to discern and sequence multiple interconnected events, capturing the complexity of economic logics. EconLogicQA comprises an array of multi-event scenarios derived from economic articles, which necessitate an insightful understanding of both temporal and logical event relationships. Through comprehensive evaluations, we exhibit that EconLogicQA effectively gauges a LLM's proficiency in navigating the sequential complexities inherent in economic contexts. We provide a detailed description of EconLogicQA dataset and shows the outcomes from evaluating the benchmark across various leading-edge LLMs, thereby offering a thorough perspective on their sequential reasoning potential in economic contexts. Our benchmark dataset is available at https://huggingface.co/datasets/yinzhu-quan/econ_logic_qa.
BenchMARL: Benchmarking Multi-Agent Reinforcement Learning
The field of Multi-Agent Reinforcement Learning (MARL) is currently facing a reproducibility crisis. While solutions for standardized reporting have been proposed to address the issue, we still lack a benchmarking tool that enables standardization and reproducibility, while leveraging cutting-edge Reinforcement Learning (RL) implementations. In this paper, we introduce BenchMARL, the first MARL training library created to enable standardized benchmarking across different algorithms, models, and environments. BenchMARL uses TorchRL as its backend, granting it high performance and maintained state-of-the-art implementations while addressing the broad community of MARL PyTorch users. Its design enables systematic configuration and reporting, thus allowing users to create and run complex benchmarks from simple one-line inputs. BenchMARL is open-sourced on GitHub: https://github.com/facebookresearch/BenchMARL
ForecastBench: A Dynamic Benchmark of AI Forecasting Capabilities
Forecasts of future events are essential inputs into informed decision-making. Machine learning (ML) systems have the potential to deliver forecasts at scale, but there is no framework for evaluating the accuracy of ML systems on a standardized set of forecasting questions. To address this gap, we introduce ForecastBench: a dynamic benchmark that evaluates the accuracy of ML systems on an automatically generated and regularly updated set of 1,000 forecasting questions. To avoid any possibility of data leakage, ForecastBench is comprised solely of questions about future events that have no known answer at the time of submission. We quantify the capabilities of current ML systems by collecting forecasts from expert (human) forecasters, the general public, and LLMs on a random subset of questions from the benchmark (N=200). While LLMs have achieved super-human performance on many benchmarks, they perform less well here: expert forecasters outperform the top-performing LLM (p-value <0.001). We display system and human scores in a public leaderboard at www.forecastbench.org.
Decision-Focused Learning: Foundations, State of the Art, Benchmark and Future Opportunities
Decision-focused learning (DFL) is an emerging paradigm that integrates machine learning (ML) and constrained optimization to enhance decision quality by training ML models in an end-to-end system. This approach shows significant potential to revolutionize combinatorial decision-making in real-world applications that operate under uncertainty, where estimating unknown parameters within decision models is a major challenge. This paper presents a comprehensive review of DFL, providing an in-depth analysis of both gradient-based and gradient-free techniques used to combine ML and constrained optimization. It evaluates the strengths and limitations of these techniques and includes an extensive empirical evaluation of eleven methods across seven problems. The survey also offers insights into recent advancements and future research directions in DFL. Code and benchmark: https://github.com/PredOpt/predopt-benchmarks
MastermindEval: A Simple But Scalable Reasoning Benchmark
Recent advancements in large language models (LLMs) have led to remarkable performance across a wide range of language understanding and mathematical tasks. As a result, increasing attention has been given to assessing the true reasoning capabilities of LLMs, driving research into commonsense, numerical, logical, and qualitative reasoning. However, with the rapid progress of reasoning-focused models such as OpenAI's o1 and DeepSeek's R1, there has been a growing demand for reasoning benchmarks that can keep pace with ongoing model developments. In this paper, we introduce MastermindEval, a simple, scalable, and interpretable deductive reasoning benchmark inspired by the board game Mastermind. Our benchmark supports two evaluation paradigms: (1) agentic evaluation, in which the model autonomously plays the game, and (2) deductive reasoning evaluation, in which the model is given a pre-played game state with only one possible valid code to infer. In our experimental results we (1) find that even easy Mastermind instances are difficult for current models and (2) demonstrate that the benchmark is scalable to possibly more advanced models in the future Furthermore, we investigate possible reasons why models cannot deduce the final solution and find that current models are limited in deducing the concealed code as the number of statement to combine information from is increasing.
FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods
This paper introduces the Fair Fairness Benchmark (FFB), a benchmarking framework for in-processing group fairness methods. Ensuring fairness in machine learning is critical for ethical and legal compliance. However, there exist challenges in comparing and developing of fairness methods due to inconsistencies in experimental settings, lack of accessible algorithmic implementations, and limited extensibility of current fairness packages and tools. To address these issues, we introduce an open-source, standardized benchmark for evaluating in-processing group fairness methods and provide a comprehensive analysis of state-of-the-art methods to ensure different notions of group fairness. This work offers the following key contributions: the provision of flexible, extensible, minimalistic, and research-oriented open-source code; the establishment of unified fairness method benchmarking pipelines; and extensive benchmarking, which yields key insights from 45,079 experiments. We believe our work will significantly facilitate the growth and development of the fairness research community. The benchmark, including code and running logs, is available at https://github.com/ahxt/fair_fairness_benchmark
JudgeBench: A Benchmark for Evaluating LLM-based Judges
LLM-based judges have emerged as a scalable alternative to human evaluation and are increasingly used to assess, compare, and improve models. However, the reliability of LLM-based judges themselves is rarely scrutinized. As LLMs become more advanced, their responses grow more sophisticated, requiring stronger judges to evaluate them. Existing benchmarks primarily focus on a judge's alignment with human preferences, but often fail to account for more challenging tasks where crowdsourced human preference is a poor indicator of factual and logical correctness. To address this, we propose a novel evaluation framework to objectively evaluate LLM-based judges. Based on this framework, we propose JudgeBench, a benchmark for evaluating LLM-based judges on challenging response pairs spanning knowledge, reasoning, math, and coding. JudgeBench leverages a novel pipeline for converting existing difficult datasets into challenging response pairs with preference labels reflecting objective correctness. Our comprehensive evaluation on a collection of prompted judges, fine-tuned judges, multi-agent judges, and reward models shows that JudgeBench poses a significantly greater challenge than previous benchmarks, with many strong models (e.g., GPT-4o) performing just slightly better than random guessing. Overall, JudgeBench offers a reliable platform for assessing increasingly advanced LLM-based judges. Data and code are available at https://github.com/ScalerLab/JudgeBench .
Evaluating Robustness of Reward Models for Mathematical Reasoning
Reward models are key in reinforcement learning from human feedback (RLHF) systems, aligning the model behavior with human preferences. Particularly in the math domain, there have been plenty of studies using reward models to align policies for improving reasoning capabilities. Recently, as the importance of reward models has been emphasized, RewardBench is proposed to understand their behavior. However, we figure out that the math subset of RewardBench has different representations between chosen and rejected completions, and relies on a single comparison, which may lead to unreliable results as it only see an isolated case. Therefore, it fails to accurately present the robustness of reward models, leading to a misunderstanding of its performance and potentially resulting in reward hacking. In this work, we introduce a new design for reliable evaluation of reward models, and to validate this, we construct RewardMATH, a benchmark that effectively represents the robustness of reward models in mathematical reasoning tasks. We demonstrate that the scores on RewardMATH strongly correlate with the results of optimized policy and effectively estimate reward overoptimization, whereas the existing benchmark shows almost no correlation. The results underscore the potential of our design to enhance the reliability of evaluation, and represent the robustness of reward model. We make our code and data publicly available.
"Pick-and-Pass" as a Hat-Trick Class for First-Principle Memory, Generalizability, and Interpretability Benchmarks
Closed drafting or "pick and pass" is a popular game mechanic where each round players select a card or other playable element from their hand and pass the rest to the next player. Games employing closed drafting make for great studies on memory and turn order due to their explicitly calculable memory of other players' hands. In this paper, we establish first-principle benchmarks for studying model-free reinforcement learning algorithms and their comparative ability to learn memory in a popular family of closed drafting games called "Sushi Go Party!", producing state-of-the-art results on this environment along the way. Furthermore, as Sushi Go Party! can be expressed as a set of closely-related games based on the set of cards in play, we quantify the generalizability of reinforcement learning algorithms trained on various sets of cards, establishing key trends between generalized performance and the set distance between the train and evaluation game configurations. Finally, we fit decision rules to interpret the strategy of the learned models and compare them to the ranking preferences of human players, finding intuitive common rules and intriguing new moves.
AI-Trader: Benchmarking Autonomous Agents in Real-Time Financial Markets
Large Language Models (LLMs) have demonstrated remarkable potential as autonomous agents, approaching human-expert performance through advanced reasoning and tool orchestration. However, decision-making in fully dynamic and live environments remains highly challenging, requiring real-time information integration and adaptive responses. While existing efforts have explored live evaluation mechanisms in structured tasks, a critical gap remains in systematic benchmarking for real-world applications, particularly in finance where stringent requirements exist for live strategic responsiveness. To address this gap, we introduce AI-Trader, the first fully-automated, live, and data-uncontaminated evaluation benchmark for LLM agents in financial decision-making. AI-Trader spans three major financial markets: U.S. stocks, A-shares, and cryptocurrencies, with multiple trading granularities to simulate live financial environments. Our benchmark implements a revolutionary fully autonomous minimal information paradigm where agents receive only essential context and must independently search, verify, and synthesize live market information without human intervention. We evaluate six mainstream LLMs across three markets and multiple trading frequencies. Our analysis reveals striking findings: general intelligence does not automatically translate to effective trading capability, with most agents exhibiting poor returns and weak risk management. We demonstrate that risk control capability determines cross-market robustness, and that AI trading strategies achieve excess returns more readily in highly liquid markets than policy-driven environments. These findings expose critical limitations in current autonomous agents and provide clear directions for future improvements. The code and evaluation data are open-sourced to foster community research: https://github.com/HKUDS/AI-Trader.
Agent-X: Evaluating Deep Multimodal Reasoning in Vision-Centric Agentic Tasks
Deep reasoning is fundamental for solving complex tasks, especially in vision-centric scenarios that demand sequential, multimodal understanding. However, existing benchmarks typically evaluate agents with fully synthetic, single-turn queries, limited visual modalities, and lack a framework to assess reasoning quality over multiple steps as required in real-world settings. To address this, we introduce Agent-X, a large-scale benchmark for evaluating vision-centric agents multi-step and deep reasoning capabilities in real-world, multimodal settings. Agent- X features 828 agentic tasks with authentic visual contexts, including images, multi-image comparisons, videos, and instructional text. These tasks span six major agentic environments: general visual reasoning, web browsing, security and surveillance, autonomous driving, sports, and math reasoning. Our benchmark requires agents to integrate tool use with explicit, stepwise decision-making in these diverse settings. In addition, we propose a fine-grained, step-level evaluation framework that assesses the correctness and logical coherence of each reasoning step and the effectiveness of tool usage throughout the task. Our results reveal that even the best-performing models, including GPT, Gemini, and Qwen families, struggle to solve multi-step vision tasks, achieving less than 50% full-chain success. These findings highlight key bottlenecks in current LMM reasoning and tool-use capabilities and identify future research directions in vision-centric agentic reasoning models. Our data and code are publicly available at https://github.com/mbzuai-oryx/Agent-X
A Sober Look at Progress in Language Model Reasoning: Pitfalls and Paths to Reproducibility
Reasoning has emerged as the next major frontier for language models (LMs), with rapid advances from both academic and industrial labs. However, this progress often outpaces methodological rigor, with many evaluations relying on benchmarking practices that lack transparency, robustness, or statistical grounding. In this work, we conduct a comprehensive empirical study and find that current mathematical reasoning benchmarks are highly sensitive to subtle implementation choices - including decoding parameters, random seeds, prompt formatting, and even hardware and software-framework configurations. Performance gains reported in recent studies frequently hinge on unclear comparisons or unreported sources of variance. To address these issues, we propose a standardized evaluation framework with clearly defined best practices and reporting standards. Using this framework, we reassess recent methods and find that reinforcement learning (RL) approaches yield only modest improvements - far below prior claims - and are prone to overfitting, especially on small-scale benchmarks like AIME24. In contrast, supervised finetuning (SFT) methods show consistently stronger generalization. To foster reproducibility, we release all code, prompts, and model outputs, for reasoning benchmarks, establishing more rigorous foundations for future work.
Mobile-Bench: An Evaluation Benchmark for LLM-based Mobile Agents
With the remarkable advancements of large language models (LLMs), LLM-based agents have become a research hotspot in human-computer interaction. However, there is a scarcity of benchmarks available for LLM-based mobile agents. Benchmarking these agents generally faces three main challenges: (1) The inefficiency of UI-only operations imposes limitations to task evaluation. (2) Specific instructions within a singular application lack adequacy for assessing the multi-dimensional reasoning and decision-making capacities of LLM mobile agents. (3) Current evaluation metrics are insufficient to accurately assess the process of sequential actions. To this end, we propose Mobile-Bench, a novel benchmark for evaluating the capabilities of LLM-based mobile agents. First, we expand conventional UI operations by incorporating 103 collected APIs to accelerate the efficiency of task completion. Subsequently, we collect evaluation data by combining real user queries with augmentation from LLMs. To better evaluate different levels of planning capabilities for mobile agents, our data is categorized into three distinct groups: SAST, SAMT, and MAMT, reflecting varying levels of task complexity. Mobile-Bench comprises 832 data entries, with more than 200 tasks specifically designed to evaluate multi-APP collaboration scenarios. Furthermore, we introduce a more accurate evaluation metric, named CheckPoint, to assess whether LLM-based mobile agents reach essential points during their planning and reasoning steps.
OIBench: Benchmarking Strong Reasoning Models with Olympiad in Informatics
As models become increasingly sophisticated, conventional algorithm benchmarks are increasingly saturated, underscoring the need for more challenging benchmarks to guide future improvements in algorithmic reasoning. This paper introduces OIBench, a high-quality, private, and challenging olympiad-level informatics dataset comprising 250 carefully curated original problems. We detail the construction methodology of the benchmark, ensuring a comprehensive assessment across various programming paradigms and complexities, and we demonstrate its contamination-resistant properties via experiments. We propose Time/Space Completion Curves for finer-grained efficiency analysis and enable direct human-model comparisons through high-level participant evaluations. Our experiments reveal that while open-source models lag behind closed-source counterparts, current SOTA models already outperform most human participants in both correctness and efficiency, while still being suboptimal compared to the canonical solutions. By releasing OIBench as a fully open-source resource (https://huggingface.co/datasets/AGI-Eval/OIBench), we hope this benchmark will contribute to advancing code reasoning capabilities for future LLMs.
D4RL: Datasets for Deep Data-Driven Reinforcement Learning
The offline reinforcement learning (RL) setting (also known as full batch RL), where a policy is learned from a static dataset, is compelling as progress enables RL methods to take advantage of large, previously-collected datasets, much like how the rise of large datasets has fueled results in supervised learning. However, existing online RL benchmarks are not tailored towards the offline setting and existing offline RL benchmarks are restricted to data generated by partially-trained agents, making progress in offline RL difficult to measure. In this work, we introduce benchmarks specifically designed for the offline setting, guided by key properties of datasets relevant to real-world applications of offline RL. With a focus on dataset collection, examples of such properties include: datasets generated via hand-designed controllers and human demonstrators, multitask datasets where an agent performs different tasks in the same environment, and datasets collected with mixtures of policies. By moving beyond simple benchmark tasks and data collected by partially-trained RL agents, we reveal important and unappreciated deficiencies of existing algorithms. To facilitate research, we have released our benchmark tasks and datasets with a comprehensive evaluation of existing algorithms, an evaluation protocol, and open-source examples. This serves as a common starting point for the community to identify shortcomings in existing offline RL methods and a collaborative route for progress in this emerging area.
A Comparative Study of Quantum Optimization Techniques for Solving Combinatorial Optimization Benchmark Problems
Quantum optimization holds promise for addressing classically intractable combinatorial problems, yet a standardized framework for benchmarking its performance, particularly in terms of solution quality, computational speed, and scalability is still lacking. In this work, we introduce a comprehensive benchmarking framework designed to systematically evaluate a range of quantum optimization techniques against well-established NP-hard combinatorial problems. Our framework focuses on key problem classes, including the Multi-Dimensional Knapsack Problem (MDKP), Maximum Independent Set (MIS), Quadratic Assignment Problem (QAP), and Market Share Problem (MSP). Our study evaluates gate-based quantum approaches, including the Variational Quantum Eigensolver (VQE) and its CVaR-enhanced variant, alongside advanced quantum algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) and its extensions. To address resource constraints, we incorporate qubit compression techniques like Pauli Correlation Encoding (PCE) and Quantum Random Access Optimization (QRAO). Experimental results, obtained from simulated quantum environments and classical solvers, provide key insights into feasibility, optimality gaps, and scalability. Our findings highlight both the promise and current limitations of quantum optimization, offering a structured pathway for future research and practical applications in quantum-enhanced decision-making.
Alpha Excel Benchmark
This study presents a novel benchmark for evaluating Large Language Models (LLMs) using challenges derived from the Financial Modeling World Cup (FMWC) Excel competitions. We introduce a methodology for converting 113 existing FMWC challenges into programmatically evaluable JSON formats and use this dataset to compare the performance of several leading LLMs. Our findings demonstrate significant variations in performance across different challenge categories, with models showing specific strengths in pattern recognition tasks but struggling with complex numerical reasoning. The benchmark provides a standardized framework for assessing LLM capabilities in realistic business-oriented tasks rather than abstract academic problems. This research contributes to the growing field of AI benchmarking by establishing proficiency among the 1.5 billion people who daily use Microsoft Excel as a meaningful evaluation metric that bridges the gap between academic AI benchmarks and practical business applications.
RM-Bench: Benchmarking Reward Models of Language Models with Subtlety and Style
Reward models are critical in techniques like Reinforcement Learning from Human Feedback (RLHF) and Inference Scaling Laws, where they guide language model alignment and select optimal responses. Despite their importance, existing reward model benchmarks often evaluate models by asking them to distinguish between responses generated by models of varying power. However, this approach fails to assess reward models on subtle but critical content changes and variations in style, resulting in a low correlation with policy model performance. To this end, we introduce RM-Bench, a novel benchmark designed to evaluate reward models based on their sensitivity to subtle content differences and resistance to style biases. Extensive experiments demonstrate that RM-Bench strongly correlates with policy model performance, making it a reliable reference for selecting reward models to align language models effectively. We evaluate nearly 40 reward models on RM-Bench. Our results reveal that even state-of-the-art models achieve an average performance of only 46.6%, which falls short of random-level accuracy (50%) when faced with style bias interference. These findings highlight the significant room for improvement in current reward models. Related code and data are available at https://github.com/THU-KEG/RM-Bench.
Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making
We aim to evaluate Large Language Models (LLMs) for embodied decision making. While a significant body of work has been leveraging LLMs for decision making in embodied environments, we still lack a systematic understanding of their performance because they are usually applied in different domains, for different purposes, and built based on different inputs and outputs. Furthermore, existing evaluations tend to rely solely on a final success rate, making it difficult to pinpoint what ability is missing in LLMs and where the problem lies, which in turn blocks embodied agents from leveraging LLMs effectively and selectively. To address these limitations, we propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks and input-output specifications of LLM-based modules. Specifically, it allows us to unify 1) a broad set of embodied decision-making tasks involving both state and temporally extended goals, 2) four commonly-used LLM-based modules for decision making: goal interpretation, subgoal decomposition, action sequencing, and transition modeling, and 3) a collection of fine-grained metrics which break down evaluation into various types of errors, such as hallucination errors, affordance errors, various types of planning errors, etc. Overall, our benchmark offers a comprehensive assessment of LLMs' performance for different subtasks, pinpointing the strengths and weaknesses in LLM-powered embodied AI systems, and providing insights for effective and selective use of LLMs in embodied decision making.
Benchmarking Neural Network Training Algorithms
Training algorithms, broadly construed, are an essential part of every deep learning pipeline. Training algorithm improvements that speed up training across a wide variety of workloads (e.g., better update rules, tuning protocols, learning rate schedules, or data selection schemes) could save time, save computational resources, and lead to better, more accurate, models. Unfortunately, as a community, we are currently unable to reliably identify training algorithm improvements, or even determine the state-of-the-art training algorithm. In this work, using concrete experiments, we argue that real progress in speeding up training requires new benchmarks that resolve three basic challenges faced by empirical comparisons of training algorithms: (1) how to decide when training is complete and precisely measure training time, (2) how to handle the sensitivity of measurements to exact workload details, and (3) how to fairly compare algorithms that require hyperparameter tuning. In order to address these challenges, we introduce a new, competitive, time-to-result benchmark using multiple workloads running on fixed hardware, the AlgoPerf: Training Algorithms benchmark. Our benchmark includes a set of workload variants that make it possible to detect benchmark submissions that are more robust to workload changes than current widely-used methods. Finally, we evaluate baseline submissions constructed using various optimizers that represent current practice, as well as other optimizers that have recently received attention in the literature. These baseline results collectively demonstrate the feasibility of our benchmark, show that non-trivial gaps between methods exist, and set a provisional state-of-the-art for future benchmark submissions to try and surpass.
Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation
First-order logic (FOL) reasoning, which involves sequential deduction, is pivotal for intelligent systems and serves as a valuable task for evaluating reasoning capabilities, particularly in chain-of-thought (CoT) contexts. Existing benchmarks often rely on extensive human annotation or handcrafted templates, making it difficult to achieve the necessary complexity, scalability, and diversity for robust evaluation. To address these limitations, we propose a novel framework called ProverGen that synergizes the generative strengths of Large Language Models (LLMs) with the rigor and precision of symbolic provers, enabling the creation of a scalable, diverse, and high-quality FOL reasoning dataset, ProverQA. ProverQA is also distinguished by its inclusion of accessible and logically coherent intermediate reasoning steps for each problem. Our evaluation shows that state-of-the-art LLMs struggle to solve ProverQA problems, even with CoT prompting, highlighting the dataset's challenging nature. We also finetune Llama3.1-8B-Instruct on a separate training set generated by our framework. The finetuned model demonstrates consistent improvements on both in-distribution and out-of-distribution test sets, suggesting the value of our proposed data generation framework. Code available at: https://github.com/opendatalab/ProverGen
VS-Bench: Evaluating VLMs for Strategic Reasoning and Decision-Making in Multi-Agent Environments
Recent advancements in Vision Language Models (VLMs) have expanded their capabilities to interactive agent tasks, yet existing benchmarks remain limited to single-agent or text-only environments. In contrast, real-world scenarios often involve multiple agents interacting within rich visual and linguistic contexts, posing challenges with both multimodal observations and strategic interactions. To bridge this gap, we introduce Visual Strategic Bench (VS-Bench), a multimodal benchmark that evaluates VLMs for strategic reasoning and decision-making in multi-agent environments. VS-Bench comprises eight vision-grounded environments spanning cooperative, competitive, and mixed-motive interactions, designed to assess agents' ability to predict others' future moves and optimize for long-term objectives. We consider two complementary evaluation dimensions, including offline evaluation of strategic reasoning by next-action prediction accuracy and online evaluation of decision-making by normalized episode return. Extensive experiments of fourteen leading VLMs reveal a significant gap between current models and optimal performance, with the best models attaining 47.8% prediction accuracy and 24.3% normalized return. We further conduct in-depth analyses on multimodal observations, test-time scaling, social behaviors, and failure cases of VLM agents. By standardizing the evaluation and highlighting the limitations of existing models, we envision VS-Bench as a foundation for future research on strategic multimodal agents. Code and data are available at https://vs-bench.github.io.
MOMAland: A Set of Benchmarks for Multi-Objective Multi-Agent Reinforcement Learning
Many challenging tasks such as managing traffic systems, electricity grids, or supply chains involve complex decision-making processes that must balance multiple conflicting objectives and coordinate the actions of various independent decision-makers (DMs). One perspective for formalising and addressing such tasks is multi-objective multi-agent reinforcement learning (MOMARL). MOMARL broadens reinforcement learning (RL) to problems with multiple agents each needing to consider multiple objectives in their learning process. In reinforcement learning research, benchmarks are crucial in facilitating progress, evaluation, and reproducibility. The significance of benchmarks is underscored by the existence of numerous benchmark frameworks developed for various RL paradigms, including single-agent RL (e.g., Gymnasium), multi-agent RL (e.g., PettingZoo), and single-agent multi-objective RL (e.g., MO-Gymnasium). To support the advancement of the MOMARL field, we introduce MOMAland, the first collection of standardised environments for multi-objective multi-agent reinforcement learning. MOMAland addresses the need for comprehensive benchmarking in this emerging field, offering over 10 diverse environments that vary in the number of agents, state representations, reward structures, and utility considerations. To provide strong baselines for future research, MOMAland also includes algorithms capable of learning policies in such settings.
FML-bench: A Benchmark for Automatic ML Research Agents Highlighting the Importance of Exploration Breadth
Large language models (LLMs) have sparked growing interest in automatic machine learning research agents. Among them, agents capable of autonomously proposing ideas and conducting machine learning experiments are particularly promising, as they maximize research automation and accelerate scientific progress by iteratively refining ideas based on experimental results. However, comprehensively evaluating such agents remains challenging. Existing benchmarks tend to overemphasize engineering aspects while neglecting academic rigor, creating barriers that obscure a clear assessment of an agent's scientific capabilities in machine learning research. They also suffer from limited task diversity, an overemphasis on application-oriented tasks over fundamental research problems, and limited scalability to realistic research settings. To address these limitations, we introduce FML-bench, a benchmark designed to evaluate automatic machine learning research agents on 8 diverse and fundamental machine learning research problems. It reduces coding burden, emphasizes fundamental problems rather than specific use cases, offers high task diversity, and is extensible to real-world machine learning GitHub repositories. Furthermore, we present a unified evaluation framework with five complementary metrics, designed to comprehensively assess agent performance on our benchmark. We evaluate state-of-the-art automatic research agents on FML-bench, and find that agents employing broad research exploration strategies outperform those focusing on narrow but deep exploration. These findings suggest that emphasizing the breadth of exploration may lead to more effective research outcomes than focusing solely on incremental refinement. Our benchmark is available at https://github.com/qrzou/FML-bench.
Mixing predictions for online metric algorithms
A major technique in learning-augmented online algorithms is combining multiple algorithms or predictors. Since the performance of each predictor may vary over time, it is desirable to use not the single best predictor as a benchmark, but rather a dynamic combination which follows different predictors at different times. We design algorithms that combine predictions and are competitive against such dynamic combinations for a wide class of online problems, namely, metrical task systems. Against the best (in hindsight) unconstrained combination of ell predictors, we obtain a competitive ratio of O(ell^2), and show that this is best possible. However, for a benchmark with slightly constrained number of switches between different predictors, we can get a (1+epsilon)-competitive algorithm. Moreover, our algorithms can be adapted to access predictors in a bandit-like fashion, querying only one predictor at a time. An unexpected implication of one of our lower bounds is a new structural insight about covering formulations for the k-server problem.
PolaRiS: Scalable Real-to-Sim Evaluations for Generalist Robot Policies
A significant challenge for robot learning research is our ability to accurately measure and compare the performance of robot policies. Benchmarking in robotics is historically challenging due to the stochasticity, reproducibility, and time-consuming nature of real-world rollouts. This challenge is exacerbated for recent generalist policies, which has to be evaluated across a wide variety of scenes and tasks. Evaluation in simulation offers a scalable complement to real world evaluations, but the visual and physical domain gap between existing simulation benchmarks and the real world has made them an unreliable signal for policy improvement. Furthermore, building realistic and diverse simulated environments has traditionally required significant human effort and expertise. To bridge the gap, we introduce Policy Evaluation and Environment Reconstruction in Simulation (PolaRiS), a scalable real-to-sim framework for high-fidelity simulated robot evaluation. PolaRiS utilizes neural reconstruction methods to turn short video scans of real-world scenes into interactive simulation environments. Additionally, we develop a simple simulation data co-training recipe that bridges remaining real-to-sim gaps and enables zero-shot evaluation in unseen simulation environments. Through extensive paired evaluations between simulation and the real world, we demonstrate that PolaRiS evaluations provide a much stronger correlation to real world generalist policy performance than existing simulated benchmarks. Its simplicity also enables rapid creation of diverse simulated environments. As such, this work takes a step towards distributed and democratized evaluation for the next generation of robotic foundation models.
Becoming Experienced Judges: Selective Test-Time Learning for Evaluators
Automatic evaluation with large language models, commonly known as LLM-as-a-judge, is now standard across reasoning and alignment tasks. Despite evaluating many samples in deployment, these evaluators typically (i) treat each case independently, missing the opportunity to accumulate experience, and (ii) rely on a single fixed prompt for all cases, neglecting the need for sample-specific evaluation criteria. We introduce Learning While Evaluating (LWE), a framework that allows evaluators to improve sequentially at inference time without requiring training or validation sets. LWE maintains an evolving meta-prompt that (i) produces sample-specific evaluation instructions and (ii) refines itself through self-generated feedback. Furthermore, we propose Selective LWE, which updates the meta-prompt only on self-inconsistent cases, focusing computation where it matters most. This selective approach retains the benefits of sequential learning while being far more cost-effective. Across two pairwise comparison benchmarks, Selective LWE outperforms strong baselines, empirically demonstrating that evaluators can improve during sequential testing with a simple selective update, learning most from the cases they struggle with.
LLM Swiss Round: Aggregating Multi-Benchmark Performance via Competitive Swiss-System Dynamics
The rapid proliferation of Large Language Models (LLMs) and diverse specialized benchmarks necessitates a shift from fragmented, task-specific metrics to a holistic, competitive ranking system that effectively aggregates performance across multiple ability dimensions. Primarily using static scoring, current evaluation methods are fundamentally limited. They struggle to determine the proper mix ratio across diverse benchmarks, and critically, they fail to capture a model's dynamic competitive fitness or its vulnerability when confronted with sequential, high-stakes tasks. To address this, we introduce the novel Competitive Swiss-System Dynamics (CSD) framework. CSD simulates a multi-round, sequential contest where models are dynamically paired across a curated sequence of benchmarks based on their accumulated win-loss record. And Monte Carlo Simulation (N=100,000 iterations) is used to approximate the statistically robust Expected Win Score (E[S_m]), which eliminates the noise of random pairing and early-round luck. Furthermore, we implement a Failure Sensitivity Analysis by parameterizing the per-round elimination quantity (T_k), which allows us to profile models based on their risk appetite--distinguishing between robust generalists and aggressive specialists. We demonstrate that CSD provides a more nuanced and context-aware ranking than traditional aggregate scoring and static pairwise models, representing a vital step towards risk-informed, next-generation LLM evaluation.
fev-bench: A Realistic Benchmark for Time Series Forecasting
Benchmark quality is critical for meaningful evaluation and sustained progress in time series forecasting, particularly given the recent rise of pretrained models. Existing benchmarks often have narrow domain coverage or overlook important real-world settings, such as tasks with covariates. Additionally, their aggregation procedures often lack statistical rigor, making it unclear whether observed performance differences reflect true improvements or random variation. Many benchmarks also fail to provide infrastructure for consistent evaluation or are too rigid to integrate into existing pipelines. To address these gaps, we propose fev-bench, a benchmark comprising 100 forecasting tasks across seven domains, including 46 tasks with covariates. Supporting the benchmark, we introduce fev, a lightweight Python library for benchmarking forecasting models that emphasizes reproducibility and seamless integration with existing workflows. Usingfev, fev-bench employs principled aggregation methods with bootstrapped confidence intervals to report model performance along two complementary dimensions: win rates and skill scores. We report results on fev-bench for various pretrained, statistical and baseline models, and identify promising directions for future research.
MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration
Large Language Models (LLMs) have marked a significant advancement in the field of natural language processing, demonstrating exceptional capabilities in reasoning, tool usage, and memory. As their applications extend into multi-agent environments, a need has arisen for a comprehensive evaluation framework that captures their abilities in reasoning, planning, collaboration, and more. This work introduces a novel benchmarking framework specifically tailored to assess LLMs within multi-agent settings, providing quantitative metrics to evaluate their judgment, reasoning, deception, self-awareness, cooperation, coordination, and rationality. We utilize games such as Chameleon and Undercover, alongside game theory scenarios like Cost Sharing, Multi-player Prisoner's Dilemma, and Public Good, to create diverse testing environments. Our framework is fortified with the Probabilistic Graphical Modeling (PGM) method, enhancing the LLMs' capabilities in navigating complex social and cognitive dimensions. The benchmark evaluates seven multi-agent systems powered by different LLMs, quantitatively highlighting a significant capability gap over threefold between the strongest, GPT-4, and the weakest, Llama-2-70B. It also confirms that our PGM enhancement boosts the inherent abilities of all selected models by 50% on average. Our codes are released here https://github.com/cathyxl/MAgIC.
DataDecide: How to Predict Best Pretraining Data with Small Experiments
Because large language models are expensive to pretrain on different datasets, using smaller-scale experiments to decide on data is crucial for reducing costs. Which benchmarks and methods of making decisions from observed performance at small scale most accurately predict the datasets that yield the best large models? To empower open exploration of this question, we release models, data, and evaluations in DataDecide -- the most extensive open suite of models over differences in data and scale. We conduct controlled pretraining experiments across 25 corpora with differing sources, deduplication, and filtering up to 100B tokens, model sizes up to 1B parameters, and 3 random seeds. We find that the ranking of models at a single, small size (e.g., 150M parameters) is a strong baseline for predicting best models at our larger target scale (1B) (~80% of com parisons correct). No scaling law methods among 8 baselines exceed the compute-decision frontier of single-scale predictions, but DataDecide can measure improvement in future scaling laws. We also identify that using continuous likelihood metrics as proxies in small experiments makes benchmarks including MMLU, ARC, HellaSwag, MBPP, and HumanEval >80% predictable at the target 1B scale with just 0.01% of the compute.
HeroBench: A Benchmark for Long-Horizon Planning and Structured Reasoning in Virtual Worlds
Large language models (LLMs) have shown remarkable capabilities in isolated step-by-step reasoning tasks such as mathematics and programming, but their proficiency in long-horizon planning, where solutions require extended, structured sequences of interdependent actions, remains underexplored. Existing benchmarks typically assess LLMs through abstract or low-dimensional algorithmic tasks, failing to capture the complexity of realistic planning environments. We introduce HeroBench, a novel benchmark designed specifically to evaluate long-horizon planning and structured reasoning within complex RPG-inspired virtual worlds. HeroBench provides a rigorously constructed dataset of tasks covering a wide range of difficulties, a simulated environment to execute and validate agent plans, and detailed analytical tools for evaluating model performance. Tasks challenge models to formulate strategic plans, efficiently gather resources, master necessary skills, craft equipment, and defeat adversaries, reflecting practical scenarios' layered dependencies and constraints. Our extensive evaluation of 25 state-of-the-art LLMs, spanning both open-source and proprietary models, including the GPT-5 family, reveals substantial performance disparities rarely observed in conventional reasoning benchmarks. Detailed error analysis further uncovers specific weaknesses in current models' abilities to generate robust high-level plans and reliably execute structured actions. HeroBench thus not only significantly advances the evaluation of LLM reasoning but also provides a flexible, scalable foundation for future research into advanced, autonomous planning in virtual environments.
ING-VP: MLLMs cannot Play Easy Vision-based Games Yet
As multimodal large language models (MLLMs) continue to demonstrate increasingly competitive performance across a broad spectrum of tasks, more intricate and comprehensive benchmarks have been developed to assess these cutting-edge models. These benchmarks introduce new challenges to core capabilities such as perception, reasoning, and planning. However, existing multimodal benchmarks fall short in providing a focused evaluation of multi-step planning based on spatial relationships in images. To bridge this gap, we present ING-VP, the first INteractive Game-based Vision Planning benchmark, specifically designed to evaluate the spatial imagination and multi-step reasoning abilities of MLLMs. ING-VP features 6 distinct games, encompassing 300 levels, each with 6 unique configurations. A single model engages in over 60,000 rounds of interaction. The benchmark framework allows for multiple comparison settings, including image-text vs. text-only inputs, single-step vs. multi-step reasoning, and with-history vs. without-history conditions, offering valuable insights into the model's capabilities. We evaluated numerous state-of-the-art MLLMs, with the highest-performing model, Claude-3.5 Sonnet, achieving an average accuracy of only 3.37%, far below the anticipated standard. This work aims to provide a specialized evaluation framework to drive advancements in MLLMs' capacity for complex spatial reasoning and planning. The code is publicly available at https://github.com/Thisisus7/ING-VP.git.
General Scales Unlock AI Evaluation with Explanatory and Predictive Power
Ensuring safe and effective use of AI requires understanding and anticipating its performance on novel tasks, from advanced scientific challenges to transformed workplace activities. So far, benchmarking has guided progress in AI, but it has offered limited explanatory and predictive power for general-purpose AI systems, given the low transferability across diverse tasks. In this paper, we introduce general scales for AI evaluation that can explain what common AI benchmarks really measure, extract ability profiles of AI systems, and predict their performance for new task instances, in- and out-of-distribution. Our fully-automated methodology builds on 18 newly-crafted rubrics that place instance demands on general scales that do not saturate. Illustrated for 15 large language models and 63 tasks, high explanatory power is unleashed from inspecting the demand and ability profiles, bringing insights on the sensitivity and specificity exhibited by different benchmarks, and how knowledge, metacognition and reasoning are affected by model size, chain-of-thought and distillation. Surprisingly, high predictive power at the instance level becomes possible using these demand levels, providing superior estimates over black-box baseline predictors based on embeddings or finetuning, especially in out-of-distribution settings (new tasks and new benchmarks). The scales, rubrics, battery, techniques and results presented here represent a major step for AI evaluation, underpinning the reliable deployment of AI in the years ahead. (Collaborative platform: https://kinds-of-intelligence-cfi.github.io/ADELE.)
RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark
We introduce RL4CO, an extensive reinforcement learning (RL) for combinatorial optimization (CO) benchmark. RL4CO employs state-of-the-art software libraries as well as best practices in implementation, such as modularity and configuration management, to be efficient and easily modifiable by researchers for adaptations of neural network architecture, environments, and algorithms. Contrary to the existing focus on specific tasks like the traveling salesman problem (TSP) for performance assessment, we underline the importance of scalability and generalization capabilities for diverse optimization tasks. We also systematically benchmark sample efficiency, zero-shot generalization, and adaptability to changes in data distributions of various models. Our experiments show that some recent state-of-the-art methods fall behind their predecessors when evaluated using these new metrics, suggesting the necessity for a more balanced view of the performance of neural CO solvers. We hope RL4CO will encourage the exploration of novel solutions to complex real-world tasks, allowing to compare with existing methods through a standardized interface that decouples the science from the software engineering. We make our library publicly available at https://github.com/kaist-silab/rl4co.
Optimized Monte Carlo Tree Search for Enhanced Decision Making in the FrozenLake Environment
Monte Carlo Tree Search (MCTS) is a powerful algorithm for solving complex decision-making problems. This paper presents an optimized MCTS implementation applied to the FrozenLake environment, a classic reinforcement learning task characterized by stochastic transitions. The optimization leverages cumulative reward and visit count tables along with the Upper Confidence Bound for Trees (UCT) formula, resulting in efficient learning in a slippery grid world. We benchmark our implementation against other decision-making algorithms, including MCTS with Policy and Q-Learning, and perform a detailed comparison of their performance. The results demonstrate that our optimized approach effectively maximizes rewards and success rates while minimizing convergence time, outperforming baseline methods, especially in environments with inherent randomness.
PuzzlePlex: Benchmarking Foundation Models on Reasoning and Planning with Puzzles
This work investigates the reasoning and planning capabilities of foundation models and their scalability in complex, dynamic environments. We introduce PuzzlePlex, a benchmark designed to assess these capabilities through a diverse set of puzzles. PuzzlePlex consists of 15 types of puzzles, including deterministic and stochastic games of varying difficulty, as well as single-player and two-player scenarios. The PuzzlePlex framework provides a comprehensive environment for each game, and supports extensibility to generate more challenging instances as foundation models evolve. Additionally, we implement customized game-playing strategies for comparison. Building on this benchmark, we develop fine-grained metrics to measure performance and conduct an in-depth analysis of frontier foundation models across two settings: instruction-based and code-based. Furthermore, we systematically investigate their scaling limits. Our findings show that reasoning models outperform others in instruction-based settings, while code-based execution presents greater challenges but offers a scalable and efficient alternative. PuzzlePlex enables targeted evaluation and guides future improvements in reasoning, planning, and generalization for foundation models.
Rethinking Decision Transformer via Hierarchical Reinforcement Learning
Decision Transformer (DT) is an innovative algorithm leveraging recent advances of the transformer architecture in reinforcement learning (RL). However, a notable limitation of DT is its reliance on recalling trajectories from datasets, losing the capability to seamlessly stitch sub-optimal trajectories together. In this work we introduce a general sequence modeling framework for studying sequential decision making through the lens of Hierarchical RL. At the time of making decisions, a high-level policy first proposes an ideal prompt for the current state, a low-level policy subsequently generates an action conditioned on the given prompt. We show DT emerges as a special case of this framework with certain choices of high-level and low-level policies, and discuss the potential failure of these choices. Inspired by these observations, we study how to jointly optimize the high-level and low-level policies to enable the stitching ability, which further leads to the development of new offline RL algorithms. Our empirical results clearly show that the proposed algorithms significantly surpass DT on several control and navigation benchmarks. We hope our contributions can inspire the integration of transformer architectures within the field of RL.
DynaAct: Large Language Model Reasoning with Dynamic Action Spaces
In modern sequential decision-making systems, the construction of an optimal candidate action space is critical to efficient inference. However, existing approaches either rely on manually defined action spaces that lack scalability or utilize unstructured spaces that render exhaustive search computationally prohibitive. In this paper, we propose a novel framework named DynaAct for automatically constructing a compact action space to enhance sequential reasoning in complex problem-solving scenarios. Our method first estimates a proxy for the complete action space by extracting general sketches observed in a corpus covering diverse complex reasoning problems using large language models. We then formulate a submodular function that jointly evaluates candidate actions based on their utility to the current state and their diversity, and employ a greedy algorithm to select an optimal candidate set. Extensive experiments on six diverse standard benchmarks demonstrate that our approach significantly improves overall performance, while maintaining efficient inference without introducing substantial latency. The implementation is available at https://github.com/zhaoxlpku/DynaAct.
Towards a Benchmark for Causal Business Process Reasoning with LLMs
Large Language Models (LLMs) are increasingly used for boosting organizational efficiency and automating tasks. While not originally designed for complex cognitive processes, recent efforts have further extended to employ LLMs in activities such as reasoning, planning, and decision-making. In business processes, such abilities could be invaluable for leveraging on the massive corpora LLMs have been trained on for gaining deep understanding of such processes. In this work, we plant the seeds for the development of a benchmark to assess the ability of LLMs to reason about causal and process perspectives of business operations. We refer to this view as Causally-augmented Business Processes (BP^C). The core of the benchmark comprises a set of BP^C related situations, a set of questions about these situations, and a set of deductive rules employed to systematically resolve the ground truth answers to these questions. Also with the power of LLMs, the seed is then instantiated into a larger-scale set of domain-specific situations and questions. Reasoning on BP^C is of crucial importance for process interventions and process improvement. Our benchmark could be used in one of two possible modalities: testing the performance of any target LLM and training an LLM to advance its capability to reason about BP^C.
