Upload 2 files
Browse files- app.py +249 -0
- requirements.txt +6 -7
app.py
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import logging
|
| 3 |
+
from typing import List, Optional, Tuple, Dict, Any
|
| 4 |
+
from fastapi import FastAPI, HTTPException
|
| 5 |
+
from pydantic import BaseModel
|
| 6 |
+
from transformers import AutoModelForCausalLM, GemmaTokenizerFast
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
# Configure logging
|
| 10 |
+
logging.basicConfig(
|
| 11 |
+
level=logging.DEBUG, # Set to DEBUG for detailed logs
|
| 12 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
| 13 |
+
handlers=[
|
| 14 |
+
logging.FileHandler("app.log"), # Log to file
|
| 15 |
+
logging.StreamHandler() # Log to console
|
| 16 |
+
]
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
+
|
| 21 |
+
# Initialize FastAPI app
|
| 22 |
+
app = FastAPI()
|
| 23 |
+
|
| 24 |
+
# Environment configuration
|
| 25 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 26 |
+
model_id = "google/gemma-2-2b-it"
|
| 27 |
+
tokenizer = GemmaTokenizerFast.from_pretrained(model_id)
|
| 28 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 29 |
+
model_id,
|
| 30 |
+
device_map="auto",
|
| 31 |
+
torch_dtype=torch.bfloat16
|
| 32 |
+
)
|
| 33 |
+
model.config.sliding_window = 4096
|
| 34 |
+
model.eval()
|
| 35 |
+
|
| 36 |
+
# Constants
|
| 37 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 38 |
+
MAX_MAX_NEW_TOKENS = 2048
|
| 39 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 40 |
+
|
| 41 |
+
# Data model for API request
|
| 42 |
+
class Item(BaseModel):
|
| 43 |
+
input: Optional[str] = None
|
| 44 |
+
system_prompt: Optional[str] = None
|
| 45 |
+
system_output: Optional[str] = None
|
| 46 |
+
history: Optional[List[Tuple[str, str]]] = None
|
| 47 |
+
templates: Optional[List[str]] = None
|
| 48 |
+
temperature: float = 0.6
|
| 49 |
+
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS
|
| 50 |
+
top_p: float = 0.9
|
| 51 |
+
repetition_penalty: float = 1.2
|
| 52 |
+
|
| 53 |
+
# Function to generate the response
|
| 54 |
+
def generate_response(item: Item) -> Dict[str, Any]:
|
| 55 |
+
logger.debug(f"Received request: {item}")
|
| 56 |
+
|
| 57 |
+
conversation = []
|
| 58 |
+
if item.history:
|
| 59 |
+
for user, assistant in item.history:
|
| 60 |
+
conversation.extend([
|
| 61 |
+
{"role": "user", "content": user},
|
| 62 |
+
{"role": "assistant", "content": assistant},
|
| 63 |
+
])
|
| 64 |
+
conversation.append({"role": "user", "content": item.input})
|
| 65 |
+
|
| 66 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 67 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 68 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 69 |
+
|
| 70 |
+
input_ids = input_ids.to(device)
|
| 71 |
+
generate_kwargs = dict(
|
| 72 |
+
input_ids=input_ids,
|
| 73 |
+
max_new_tokens=item.max_new_tokens,
|
| 74 |
+
do_sample=True,
|
| 75 |
+
top_p=item.top_p,
|
| 76 |
+
temperature=item.temperature,
|
| 77 |
+
num_beams=1,
|
| 78 |
+
repetition_penalty=item.repetition_penalty,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
try:
|
| 82 |
+
logger.debug("Starting text generation")
|
| 83 |
+
output = model.generate(**generate_kwargs, return_dict_in_generate=True)
|
| 84 |
+
decoded_output = tokenizer.decode(output.sequences[0], skip_special_tokens=True)
|
| 85 |
+
logger.debug("Text generation successful")
|
| 86 |
+
return {"output": decoded_output}
|
| 87 |
+
except Exception as e:
|
| 88 |
+
logger.error(f"Error during text generation: {str(e)}", exc_info=True)
|
| 89 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 90 |
+
|
| 91 |
+
# Endpoint for generating text
|
| 92 |
+
@app.post("/")
|
| 93 |
+
async def generate_text(item: Item):
|
| 94 |
+
logger.info("Processing request")
|
| 95 |
+
if item.input is None and item.system_prompt is None:
|
| 96 |
+
logger.warning("Missing required parameters")
|
| 97 |
+
raise HTTPException(status_code=400, detail="Parameter `input` or `system prompt` is required.")
|
| 98 |
+
|
| 99 |
+
response = generate_response(item)
|
| 100 |
+
logger.info("Request processed successfully")
|
| 101 |
+
return response
|
| 102 |
+
|
| 103 |
+
# Run the app
|
| 104 |
+
if __name__ == "__main__":
|
| 105 |
+
import uvicorn
|
| 106 |
+
logger.info("Starting server")
|
| 107 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
| 108 |
+
|
| 109 |
+
'''import os
|
| 110 |
+
from threading import Thread
|
| 111 |
+
from typing import Iterator
|
| 112 |
+
|
| 113 |
+
import gradio as gr
|
| 114 |
+
import spaces
|
| 115 |
+
import torch
|
| 116 |
+
from transformers import AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer
|
| 117 |
+
|
| 118 |
+
DESCRIPTION = """\
|
| 119 |
+
# Gemma 2 2B IT
|
| 120 |
+
|
| 121 |
+
Gemma 2 is Google's latest iteration of open LLMs.
|
| 122 |
+
This is a demo of [`google/gemma-2-2b-it`](https://huggingface.co/google/gemma-2-2b-it), fine-tuned for instruction following.
|
| 123 |
+
For more details, please check [our post](https://huggingface.co/blog/gemma2).
|
| 124 |
+
|
| 125 |
+
👉 Looking for a larger and more powerful version? Try the 27B version in [HuggingChat](https://huggingface.co/chat/models/google/gemma-2-27b-it) and the 9B version in [this Space](https://huggingface.co/spaces/huggingface-projects/gemma-2-9b-it).
|
| 126 |
+
"""
|
| 127 |
+
|
| 128 |
+
MAX_MAX_NEW_TOKENS = 2048
|
| 129 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 130 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 131 |
+
|
| 132 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 133 |
+
|
| 134 |
+
model_id = "google/gemma-2-2b-it"
|
| 135 |
+
tokenizer = GemmaTokenizerFast.from_pretrained(model_id)
|
| 136 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 137 |
+
model_id,
|
| 138 |
+
device_map="auto",
|
| 139 |
+
torch_dtype=torch.bfloat16,
|
| 140 |
+
)
|
| 141 |
+
model.config.sliding_window = 4096
|
| 142 |
+
model.eval()
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
@spaces.GPU(duration=90)
|
| 146 |
+
def generate(
|
| 147 |
+
message: str,
|
| 148 |
+
chat_history: list[tuple[str, str]],
|
| 149 |
+
max_new_tokens: int = 1024,
|
| 150 |
+
temperature: float = 0.6,
|
| 151 |
+
top_p: float = 0.9,
|
| 152 |
+
top_k: int = 50,
|
| 153 |
+
repetition_penalty: float = 1.2,
|
| 154 |
+
) -> Iterator[str]:
|
| 155 |
+
conversation = []
|
| 156 |
+
for user, assistant in chat_history:
|
| 157 |
+
conversation.extend(
|
| 158 |
+
[
|
| 159 |
+
{"role": "user", "content": user},
|
| 160 |
+
{"role": "assistant", "content": assistant},
|
| 161 |
+
]
|
| 162 |
+
)
|
| 163 |
+
conversation.append({"role": "user", "content": message})
|
| 164 |
+
|
| 165 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 166 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 167 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 168 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 169 |
+
input_ids = input_ids.to(model.device)
|
| 170 |
+
|
| 171 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
| 172 |
+
generate_kwargs = dict(
|
| 173 |
+
{"input_ids": input_ids},
|
| 174 |
+
streamer=streamer,
|
| 175 |
+
max_new_tokens=max_new_tokens,
|
| 176 |
+
do_sample=True,
|
| 177 |
+
top_p=top_p,
|
| 178 |
+
top_k=top_k,
|
| 179 |
+
temperature=temperature,
|
| 180 |
+
num_beams=1,
|
| 181 |
+
repetition_penalty=repetition_penalty,
|
| 182 |
+
)
|
| 183 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 184 |
+
t.start()
|
| 185 |
+
|
| 186 |
+
outputs = []
|
| 187 |
+
for text in streamer:
|
| 188 |
+
outputs.append(text)
|
| 189 |
+
yield "".join(outputs)
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
chat_interface = gr.ChatInterface(
|
| 193 |
+
fn=generate,
|
| 194 |
+
additional_inputs=[
|
| 195 |
+
gr.Slider(
|
| 196 |
+
label="Max new tokens",
|
| 197 |
+
minimum=1,
|
| 198 |
+
maximum=MAX_MAX_NEW_TOKENS,
|
| 199 |
+
step=1,
|
| 200 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
| 201 |
+
),
|
| 202 |
+
gr.Slider(
|
| 203 |
+
label="Temperature",
|
| 204 |
+
minimum=0.1,
|
| 205 |
+
maximum=4.0,
|
| 206 |
+
step=0.1,
|
| 207 |
+
value=0.6,
|
| 208 |
+
),
|
| 209 |
+
gr.Slider(
|
| 210 |
+
label="Top-p (nucleus sampling)",
|
| 211 |
+
minimum=0.05,
|
| 212 |
+
maximum=1.0,
|
| 213 |
+
step=0.05,
|
| 214 |
+
value=0.9,
|
| 215 |
+
),
|
| 216 |
+
gr.Slider(
|
| 217 |
+
label="Top-k",
|
| 218 |
+
minimum=1,
|
| 219 |
+
maximum=1000,
|
| 220 |
+
step=1,
|
| 221 |
+
value=50,
|
| 222 |
+
),
|
| 223 |
+
gr.Slider(
|
| 224 |
+
label="Repetition penalty",
|
| 225 |
+
minimum=1.0,
|
| 226 |
+
maximum=2.0,
|
| 227 |
+
step=0.05,
|
| 228 |
+
value=1.2,
|
| 229 |
+
),
|
| 230 |
+
],
|
| 231 |
+
stop_btn=None,
|
| 232 |
+
examples=[
|
| 233 |
+
["Hello there! How are you doing?"],
|
| 234 |
+
["Can you explain briefly to me what is the Python programming language?"],
|
| 235 |
+
["Explain the plot of Cinderella in a sentence."],
|
| 236 |
+
["How many hours does it take a man to eat a Helicopter?"],
|
| 237 |
+
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
| 238 |
+
],
|
| 239 |
+
cache_examples=False,
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
with gr.Blocks(css="style.css", fill_height=True) as demo:
|
| 243 |
+
gr.Markdown(DESCRIPTION)
|
| 244 |
+
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
| 245 |
+
chat_interface.render()
|
| 246 |
+
|
| 247 |
+
if __name__ == "__main__":
|
| 248 |
+
demo.queue(max_size=20).launch()
|
| 249 |
+
'''
|
requirements.txt
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
transformers
|
|
|
|
| 1 |
+
accelerate==0.33.0
|
| 2 |
+
bitsandbytes==0.43.2
|
| 3 |
+
gradio==4.39.0
|
| 4 |
+
spaces==0.29.2
|
| 5 |
+
torch==2.2.0
|
| 6 |
+
transformers==4.43.3
|
|
|