--- language: anp language_name: Angika language_family: indoaryan_central tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-indoaryan_central license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 3.777 - name: best_isotropy type: isotropy value: 0.8298 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Angika - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Angika** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## ЁЯУЛ Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.298x | 3.30 | 0.1077% | 449,296 | | **16k** | 3.575x | 3.58 | 0.1168% | 414,503 | | **32k** | 3.777x ЁЯПЖ | 3.78 | 0.1234% | 392,298 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `рд╕рд╛рдзреНрдп рд░реБрдк рд╕реС рдЖрдЗрд╕рд▓реИрдгреНрдб рджреБрдирд┐рдпрд╛ рдХреЗ рд╕рдмрд╕реЗ рдкреБрд░рд╛рд╜рдиреЛ рд╕рдВрд╕рджреАрдп рд▓реЛрдХрддрдВрддреНрд░ рдЫреАрдХреИред рдПрдХрд░рд╛ рдореС рдЕрднреА 6...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `тЦБрд╕рд╛ рдзреНрдп тЦБрд░реБрдк тЦБрд╕реС тЦБрдЖрдЗрд╕рд▓реИрдгреНрдб тЦБрджреБрдирд┐рдпрд╛ тЦБрдХреЗ тЦБрд╕рдмрд╕реЗ тЦБрдкреБрд░рд╛ рд╜ ... (+26 more)` | 36 | | 16k | `тЦБрд╕рд╛ рдзреНрдп тЦБрд░реБрдк тЦБрд╕реС тЦБрдЖрдЗрд╕рд▓реИрдгреНрдб тЦБрджреБрдирд┐рдпрд╛ тЦБрдХреЗ тЦБрд╕рдмрд╕реЗ тЦБрдкреБрд░рд╛ рд╜рдиреЛ ... (+24 more)` | 34 | | 32k | `тЦБрд╕рд╛рдзреНрдп тЦБрд░реБрдк тЦБрд╕реС тЦБрдЖрдЗрд╕рд▓реИрдгреНрдб тЦБрджреБрдирд┐рдпрд╛ тЦБрдХреЗ тЦБрд╕рдмрд╕реЗ тЦБрдкреБрд░рд╛рд╜рдиреЛ тЦБрд╕рдВрд╕рджреАрдп тЦБрд▓реЛрдХрддрдВрддреНрд░ ... (+22 more)` | 32 | **Sample 2:** `рдЬрдирддрд╛ рджрд▓ рдПрдЧреЛ рд░рд╛рд╖реНрдЯреНрд░реАрдп рджрд▓ рдЫреЗрдХреИред рдЗрддрд┐рд╣рд╛рд╕ рдПрдХрд░реЛ рджреЗрдЦреМ рдмрд╛рд╣рд░реА рдХрдбрд╝реА рд╕рдВрджрд░реНрдн` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `тЦБрдЬрдирддрд╛ тЦБрджрд▓ тЦБрдПрдЧреЛ тЦБрд░рд╛рд╖реНрдЯреНрд░реАрдп тЦБрджрд▓ тЦБрдЫреЗрдХреИ ред тЦБрдЗрддрд┐рд╣рд╛рд╕ тЦБрдПрдХрд░реЛ тЦБрджреЗрдЦреМ ... (+3 more)` | 13 | | 16k | `тЦБрдЬрдирддрд╛ тЦБрджрд▓ тЦБрдПрдЧреЛ тЦБрд░рд╛рд╖реНрдЯреНрд░реАрдп тЦБрджрд▓ тЦБрдЫреЗрдХреИ ред тЦБрдЗрддрд┐рд╣рд╛рд╕ тЦБрдПрдХрд░реЛ тЦБрджреЗрдЦреМ ... (+3 more)` | 13 | | 32k | `тЦБрдЬрдирддрд╛ тЦБрджрд▓ тЦБрдПрдЧреЛ тЦБрд░рд╛рд╖реНрдЯреНрд░реАрдп тЦБрджрд▓ тЦБрдЫреЗрдХреИ ред тЦБрдЗрддрд┐рд╣рд╛рд╕ тЦБрдПрдХрд░реЛ тЦБрджреЗрдЦреМ ... (+3 more)` | 13 | **Sample 3:** `рдХреЛрдиреЛ рд░реЛрдЧ рд╕реЖрдВ рдордиреБрд╖реНрдп рдХреЗ рдмрдЪрд╛рд╡ рд▓реЗрд▓реА рдЬреЗ рд╡рд┐рдзрд┐ рдЕрдкрдиреИрд▓реК рдЬрд╛рдп рдЫреИ, рд╡реЛрдХрд░рд╛ рдЪрд┐рдХрд┐рддреНрд╕рд╛ рдХрд╣рд▓реК рдЬрд╛рдп ...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `тЦБрдХреЛрдиреЛ тЦБрд░реЛрдЧ тЦБрд╕реЖрдВ тЦБрдордиреБрд╖реНрдп тЦБрдХреЗ тЦБрдмрдЪ рд╛рд╡ тЦБрд▓реЗрд▓реА тЦБрдЬреЗ тЦБрд╡рд┐рдзрд┐ ... (+14 more)` | 24 | | 16k | `тЦБрдХреЛрдиреЛ тЦБрд░реЛрдЧ тЦБрд╕реЖрдВ тЦБрдордиреБрд╖реНрдп тЦБрдХреЗ тЦБрдмрдЪрд╛рд╡ тЦБрд▓реЗрд▓реА тЦБрдЬреЗ тЦБрд╡рд┐рдзрд┐ тЦБрдЕрдкрди ... (+12 more)` | 22 | | 32k | `тЦБрдХреЛрдиреЛ тЦБрд░реЛрдЧ тЦБрд╕реЖрдВ тЦБрдордиреБрд╖реНрдп тЦБрдХреЗ тЦБрдмрдЪрд╛рд╡ тЦБрд▓реЗрд▓реА тЦБрдЬреЗ тЦБрд╡рд┐рдзрд┐ тЦБрдЕрдкрдиреИрд▓реК ... (+9 more)` | 19 | ### Key Findings - **Best Compression:** 32k achieves 3.777x compression - **Lowest UNK Rate:** 8k with 0.1077% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 5,133 | 12.33 | 15,401 | 20.6% | 52.0% | | **2-gram** | Subword | 1,763 ЁЯПЖ | 10.78 | 18,130 | 37.8% | 73.7% | | **3-gram** | Word | 4,136 | 12.01 | 14,976 | 21.1% | 59.7% | | **3-gram** | Subword | 12,510 | 13.61 | 74,071 | 14.6% | 40.2% | | **4-gram** | Word | 6,638 | 12.70 | 28,729 | 18.3% | 55.5% | | **4-gram** | Subword | 43,295 | 15.40 | 212,245 | 8.3% | 26.6% | | **5-gram** | Word | 4,565 | 12.16 | 20,947 | 20.4% | 62.1% | | **5-gram** | Subword | 74,529 | 16.19 | 271,380 | 5.9% | 20.8% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `рдХреЗ рд▓рд┐рдП` | 1,987 | | 2 | `рдХреЗ рдЕрдиреБрд╕рд╛рд░` | 1,711 | | 3 | `рдЫреИ рдЬреЗ` | 1,664 | | 4 | `рдЫреИ рдЬреЗрдХрд░рд╛` | 1,521 | | 5 | `рдХреЗ рдФрд╕рдд` | 1,421 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `рдЫреИ рдЬреЗрдХрд░рд╛ рдо` | 1,240 | | 2 | `рдЬрдирдЧрдгрдирд╛ рдХреЗ рдЕрдиреБрд╕рд╛рд░` | 1,231 | | 3 | `рдХреЗ рд░реВрдк рдореЗрдВ` | 796 | | 4 | `рдкрд░рд┐рд╡рд╛рд░ рд░рд╣реИ рдЫреИ` | 789 | | 5 | `рдо рд╕реНрдерд┐рдд рдРрдЧреЛ` | 690 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `рдЫреИ рдЬреЗрдХрд░рд╛ рдо рдХреБрд▓` | 638 | | 2 | `рдХреЗ рдФрд╕рдд рд▓рд┐рдВрдЧ рдЕрдиреБрдкрд╛рдд` | 559 | | 3 | `рдЫреИ рдЬрдирдЧрдгрдирд╛ рдХреЗ рдЕрдиреБрд╕рд╛рд░` | 535 | | 4 | `рдХреЗ рдЬрдирдЧрдгрдирд╛ рдХреЗ рдЕрдиреБрд╕рд╛рд░` | 498 | | 5 | `рдЧрд╛рдБрд╡ рдЫреИ рдЬреЗрдХрд░рд╛ рдо` | 479 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `рдЧрд╛рдБрд╡ рдЫреИ рдЬреЗрдХрд░рд╛ рдо рдХреБрд▓` | 476 | | 2 | `рдЫреИ рдХреЗ рдЬрдирдЧрдгрдирд╛ рдХреЗ рдЕрдиреБрд╕рд╛рд░` | 438 | | 3 | `0 6 рдЖрдпреБ рд╡рд░реНрдЧ рдХреЗ` | 436 | | 4 | `6 рдЖрдпреБ рд╡рд░реНрдЧ рдХреЗ рдмрдЪреНрдЪрд╛` | 435 | | 5 | `рдЖрдпреБ рд╡рд░реНрдЧ рдХреЗ рдмрдЪреНрдЪрд╛ рдХреЗ` | 432 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `рд░ _` | 44,141 | | 2 | `_ рдХреЗ` | 43,544 | | 3 | `рдХреЗ _` | 39,889 | | 4 | `, _` | 27,806 | | 5 | `ред _` | 27,568 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ рдХреЗ _` | 37,379 | | 2 | `_ рдореЗрдВ _` | 14,100 | | 3 | `_ рдХреА _` | 9,283 | | 4 | `_ рдФ рд░` | 9,137 | | 5 | `рдФ рд░ _` | 9,133 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ рдФ рд░ _` | 9,104 | | 2 | `_ рд╣реИ ред _` | 6,415 | | 3 | `_ рдЫреИ ред _` | 6,096 | | 4 | `_ рдП рдХ _` | 4,687 | | 5 | `_ рдЫреИ , _` | 3,618 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ рдЫреИ , _ рдЬреЗ` | 2,233 | | 2 | `_ рднрд╛ рд░ рдд _` | 2,072 | | 3 | `рддрд╛ _ рд╣реИ ред _` | 2,029 | | 4 | `_ рдЕ рдиреБ рд╕рд╛ рд░` | 2,019 | | 5 | `_ рдХреЗ _ рд▓рд┐ рдП` | 1,986 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 1,763 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~21% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.8698 | 1.827 | 5.82 | 59,321 | 13.0% | | **1** | Subword | 0.9730 | 1.963 | 11.48 | 4,665 | 2.7% | | **2** | Word | 0.2523 | 1.191 | 1.56 | 344,866 | 74.8% | | **2** | Subword | 0.5491 | 1.463 | 3.85 | 53,547 | 45.1% | | **3** | Word | 0.0707 | 1.050 | 1.12 | 537,872 | 92.9% | | **3** | Subword | 0.4976 | 1.412 | 2.68 | 206,241 | 50.2% | | **4** | Word | 0.0212 ЁЯПЖ | 1.015 | 1.03 | 599,865 | 97.9% | | **4** | Subword | 0.3012 | 1.232 | 1.72 | 551,827 | 69.9% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `рдХреЗ рдорд╣рд┐рдорд╛ рдмрд╣реБрдд рдереЛрдбрд╝рд╛ рдпрд╛ рдПрдХ рдХреНрд╖реЗрддреНрд░ рдХ рд╕рд╛рдмреБрди рдХрд╛рд░рдЦрд╛рдиреЛрдВ рдореЗрдВ рд╣реИ рдкреНрд░реЗрдордЪрдВрдж рдЕрдзреНрдпрд╛рдкрдХ рдлреНрд░рд╛рдВрд╕рд┐рд╕ рдкреНрд░рдердо` 2. `рдореЗрдВ рдЫреИ рдЬреЗрдХрд░рд╛ рдореЕреЖ рдХреБрд▓ 650 рдорд╣рд┐рд▓рд╛ рдЫреИ рджреЗрд╡рдирд╛рдЧрд░реА рд▓рд┐рдкрд┐ рд╢рдмреНрджрд╛рд╡рд▓реА рд▓рд┐рдкрд┐ рдХреЗрд░реМ рдЕрдзрд┐рдХрд╛рд░ рдкреНрд░рд╛рдкреНрдд рдЫреИ` 3. `рдЫреИ рдЙрджрд╛рд╣рд░рдгрддрдГ x11 рд░рдВрдЧреЛрдВ рдХреЗ рдореМрдЦрд┐рдХ рд╕рдВрдЪрд╛рд░ рдкреНрд░рддреАрдХ рд╕рдореВрд╣ рднреА рдкрдВрдЪрд╡рдЯреА рдкреНрд░рд╕рд┐рджреНрдз рд╣реБрдЖ рдЖрдЬ резрелреж рд╕реЗ` **Context Size 2:** 1. `рдХреЗ рд▓рд┐рдП рдорд┐рд╕реНрд░ рдкрд░ рд╡рд┐рдЬрдп рдкреНрд░рд╛рдкреНрдд рдХрд░реИ рдЫреАрдпреИ рдЬреЗ рдХрдгреЛрдЬ рд╕реС рднреА рдЕрдзрд┐рдХ рдЕрд▓рдЧ рдЕрд▓рдЧ рд░реВрдк рджрд┐рдпрд╛` 2. `рдХреЗ рдЕрдиреБрд╕рд╛рд░ рдкрддреНрд░рд╛рдВрдЧ рдЧрд╛рдВрд╡ рдХреЗ рдЖрдмрд╛рджреА 105 рдЫреИ рдЬреЗ рдЧрд╛рдБрд╡ рдХреЗ рдЬрдирд╕рдВрдЦреНрдпрд╛ рдЫреИ рдЬреЗрдХрд░рд╛ рдо 147 рдкреБрд░реБрд╖` 3. `рдЫреИ рдЬреЗ рдЙрддреНрддрд░ рдкреНрд░рджреЗрд╢ рд░рд╛рдЬреНрдп рдордБ рд╕реНрдерд┐рдд рдЫреИ рдорд╛рдирджрдВрдб рдХреЗ рдЕрдиреБрд╕рд╛рд░ рдХреБрдВрджрд░реА рд╕реЛрди рдХреБрд░рд╣рд╛ рд╣рд░рд▓рд╛ рдХреЗ рдХреБрд▓` **Context Size 3:** 1. `рдЫреИ рдЬреЗрдХрд░рд╛ рдо 118 рдкреБрд░реБрд╖ рдЖрд░реБ рдЬрдмрдХрд┐ рдорд╣рд┐рд▓рд╛ рдЫреИ рддреЗрд▓рдмрд╛рджреНрд░реЛ рдЧрд╛рдВрд╡ рдо 0 6 рдЖрдпреБ рд╡рд░реНрдЧ рдХреЗ рдмрдЪреНрдЪрд╛` 2. `рдЬрдирдЧрдгрдирд╛ рдХреЗ рдЕрдиреБрд╕рд╛рд░ рд╣рд░рд╡рд╛рдбреАрд╣ рдХреЗ рдмрд╛рд▓ рд▓рд┐рдВрдЧ рдЕрдиреБрдкрд╛рдд 915 рдЫреИ рдЬреЗ рдЙрддреНрддрд░ рдкреНрд░рджреЗрд╢ рдХреЗ рдорд┐рд░реНрдЬрд╝рд╛рдкреБрд░ рдЬрд┐рд▓реЗ рдХреА рдмреЗрд▓рди` 3. `рдХреЗ рд░реВрдк рдореЗрдВ рджреЗрдЦрд╛ рдЬрд╛рддрд╛ рд╣реИ рдХрд┐рдВрддреБ рдкрд╛рдк рдХреЗ рд╕рднреА рдкрд░рд┐рдгрд╛рдо рдирд╖реНрдЯ рдирд╣реАрдВ рд╣реЛрддреЗ рдЙрд╕рдХреЗ рдкрд░рд┐рдгрд╛рдо рджреВрд░ рдХрд░рдиреЗ` **Context Size 4:** 1. `рдЫреИ рдЬреЗрдХрд░рд╛ рдо рдХреБрд▓ 72 рдкреБрд░реБрд╖ рдЫреИ рдЬрдмрдХрд┐ 80 рдорд╣рд┐рд▓рд╛ рдЫреИ рдЬреИрд╕рдиреЛ рдХрд┐ рдХреЗ рдЬрдирдЧрдгрдирд╛ рдо рдмрддреИрд▓реЛ рдЧреЗрд▓реЛ рдЫреИ` 2. `рдХреЗ рдФрд╕рдд рд▓рд┐рдВрдЧ рдЕрдиреБрдкрд╛рдд 835 рд╕ рдХрдо рдЫреИ` 3. `рдЫреИ рдЬрдирдЧрдгрдирд╛ рдХреЗ рдЕрдиреБрд╕рд╛рд░ рд╕рд░реЛрдЦ рдЧрд╛рдВрд╡ рдХреЗ рдЖрдмрд╛рджреА 673 рдЫреЗрд▓реИ рдЬреЗрдХрд░рд╛ рдореС рд╕реС 613 рдкреБрд░реБрд╖ рдЖрд░реВ 503 рдорд╣рд┐рд▓рд╛ рдЫреИ` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_(рдореЗрд▓_рдЙрддреНрдкрддреНрддрд┐_рд╕реВрддреНрд░реЛрдВ_рдХреЗ_рдХреЗ_` 2. `рд░_рд╣реИрдВ_рд░рд╛рдирд░реНрдЬреА_рд╕рдореНрдкрд░рд┐рд╕рдмрдирд╛_рджреЛ` 3. `рдХ_рджреМрд░рд╛рдЬрд▓рдбрд╝рдХрдИ_рд╕рд╛рде_рдХреБрд▓_` **Context Size 2:** 1. `рд░_рдХреЗ_рдЗрд╕_рдЫреИред_рдореБрдЖрд╡рд┐рд╖реНрдХрд╛рд░_рджрд┐` 2. `_рдХреЗ_рдареАрдХ_рдпреМрдЧрд┐рдХ_рд░рдХреНрд╖рд╛_рдЖрд╡рд╛рд╕реА_` 3. `рдХреЗ_рдЕрдзреНрдпрдпрди_рдореЗрдВ_рд▓реИрдЯрд┐рди_рдХрд╛_рджрд╛рд░реНрд╢` **Context Size 3:** 1. `_рдХреЗ_рднрд╛рдИ_рдереЗ_рдФрд░_рдорд╛рдирд╛_рдЬрд╛рддрд╛_рд╣реИ` 2. `_рдореЗрдВ_5%_рдЫреИред_рдЬрдирддрд╛рдБрддреНрд░рд┐рдХ_рд░реВрдк_` 3. `_рдХреА_рдЬрд╛рддреА_рд╣реИрдВ_рдЬреЛ_рд▓рдЧрди_рдХреА_рдХрд┐рддрд╛` **Context Size 4:** 1. `_рдФрд░_рдЧреИрд░-рдиреНрдпрд╛рдпрд┐рдХ_рд╕рджрди_рдХреА_рдЖрд╡реГ` 2. `_рд╣реИред_рд╡реНрдпрд╛рдкрдХ_рдЫреИ_рддs_рдЖрдЦрд░реА_рд╕рд╛рдВрд╕` 3. `_рдЫреИред_рдЗрддрд┐рд╣рд╛рд╕_рдХреЗ_рдмрд╛рдж_рдЙрд╕рдХреЛ_рд╕` ### Key Findings - **Best Predictability:** Context-4 (word) with 97.9% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (551,827 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 27,495 | | Total Tokens | 705,736 | | Mean Frequency | 25.67 | | Median Frequency | 4 | | Frequency Std Dev | 313.78 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | рдХреЗ | 37,476 | | 2 | рдореЗрдВ | 14,866 | | 3 | рдЫреИ | 13,486 | | 4 | рд╣реИ | 12,172 | | 5 | рдХреА | 9,675 | | 6 | рдФрд░ | 9,147 | | 7 | рдХрд╛ | 7,600 | | 8 | рд╕реЗ | 7,248 | | 9 | рдХреЛ | 5,485 | | 10 | рд╣реИрдВ | 5,201 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | zeros | 2 | | 2 | ignored | 2 | | 3 | dmy | 2 | | 4 | mdy | 2 | | 5 | paren | 2 | | 6 | breaking | 2 | | 7 | inserted | 2 | | 8 | values | 2 | | 9 | separator | 2 | | 10 | days | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 1.1206 | | R┬▓ (Goodness of Fit) | 0.994934 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 39.9% | | Top 1,000 | 69.2% | | Top 5,000 | 86.8% | | Top 10,000 | 92.8% | ### Key Findings - **Zipf Compliance:** R┬▓=0.9949 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 39.9% of corpus - **Long Tail:** 17,495 words needed for remaining 7.2% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.8298 ЁЯПЖ | 0.3551 | N/A | N/A | | **mono_64d** | 64 | 0.7019 | 0.2957 | N/A | N/A | | **mono_128d** | 128 | 0.3519 | 0.2719 | N/A | N/A | | **aligned_32d** | 32 | 0.8298 | 0.3586 | 0.0160 | 0.0940 | | **aligned_64d** | 64 | 0.7019 | 0.2950 | 0.0180 | 0.1240 | | **aligned_128d** | 128 | 0.3519 | 0.2673 | 0.0300 | 0.1420 | ### Key Findings - **Best Isotropy:** mono_32d with 0.8298 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.3073. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 3.0% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **1.980** | High formulaic/idiomatic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-реЛрдВ` | рдЪрдХреНрд░рд╡рд╛рддреЛрдВ, рдЕрдиреБрдХреНрд░рдореЛрдВ, рдореЛрд╣рд░реЛрдВ | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `tion` | 2.65x | 15 contexts | motion, action, edition | | `atio` | 2.66x | 12 contexts | nations, station, national | | `stat` | 2.68x | 6 contexts | state, status, statue | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. *No significant affix co-occurrences detected.* ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | рдЕрд╡рд┐рд╖реНрдХрд╛рд░реЛрдВ | **`рдЕрд╡рд┐рд╖реНрдХрд╛рд░-реЛрдВ`** | 4.5 | `рдЕрд╡рд┐рд╖реНрдХрд╛рд░` | | рд░реВрдкрд╛рдиреНрддрд░рдгреЛрдВ | **`рд░реВрдкрд╛рдиреНрддрд░рдг-реЛрдВ`** | 4.5 | `рд░реВрдкрд╛рдиреНрддрд░рдг` | | рдорд╣рд╛рд╡рд┐рджреНрдпрд╛рд▓рдпреЛрдВ | **`рдорд╣рд╛рд╡рд┐рджреНрдпрд╛рд▓рдп-реЛрдВ`** | 4.5 | `рдорд╣рд╛рд╡рд┐рджреНрдпрд╛рд▓рдп` | | рдпреВрд░реЛрдкрд┐рдпрдиреЛрдВ | **`рдпреВрд░реЛрдкрд┐рдпрди-реЛрдВ`** | 4.5 | `рдпреВрд░реЛрдкрд┐рдпрди` | | рдкреНрд░рдХрд╛рд╢рдХреЛрдВ | **`рдкреНрд░рдХрд╛рд╢рдХ-реЛрдВ`** | 4.5 | `рдкреНрд░рдХрд╛рд╢рдХ` | | рдЕрдиреБрдХреНрд░рдореЛрдВ | **`рдЕрдиреБрдХреНрд░рдо-реЛрдВ`** | 4.5 | `рдЕрдиреБрдХреНрд░рдо` | | рд╕рдореНрдореЗрд▓рдиреЛрдВ | **`рд╕рдореНрдореЗрд▓рди-реЛрдВ`** | 4.5 | `рд╕рдореНрдореЗрд▓рди` | | рд╕реБрд▓реНрддрд╛рдиреЛрдВ | **`рд╕реБрд▓реНрддрд╛рди-реЛрдВ`** | 4.5 | `рд╕реБрд▓реНрддрд╛рди` | | рдЧрдгрд┐рддрдЬреНрдЮреЛрдВ | **`рдЧрдгрд┐рддрдЬреНрдЮ-реЛрдВ`** | 4.5 | `рдЧрдгрд┐рддрдЬреНрдЮ` | | рдкреБрд╕реНрддрдХрд╛рд▓рдпреЛрдВ | **`рдкреБрд╕реНрддрдХрд╛рд▓рдп-реЛрдВ`** | 4.5 | `рдкреБрд╕реНрддрдХрд╛рд▓рдп` | | рдорд╣рд╛рдХрд╛рд╡реНрдпреЛрдВ | **`рдорд╣рд╛рдХрд╛рд╡реНрдп-реЛрдВ`** | 4.5 | `рдорд╣рд╛рдХрд╛рд╡реНрдп` | | рдЧреБрдгрд╕реВрддреНрд░реЛрдВ | **`рдЧреБрдгрд╕реВрддреНрд░-реЛрдВ`** | 4.5 | `рдЧреБрдгрд╕реВрддреНрд░` | | рд╢рд╛рд╕реНрддреНрд░реЛрдВ | **`рд╢рд╛рд╕реНрддреНрд░-реЛрдВ`** | 4.5 | `рд╢рд╛рд╕реНрддреНрд░` | | рд╕рдВрдЧреНрд░рд╣рд╛рд▓рдпреЛрдВ | **`рд╕рдВрдЧреНрд░рд╣рд╛рд▓рдп-реЛрдВ`** | 4.5 | `рд╕рдВрдЧреНрд░рд╣рд╛рд▓рдп` | | рдХрд╛рд░реНрдпрд╛рд▓рдпреЛрдВ | **`рдХрд╛рд░реНрдпрд╛рд▓рдп-реЛрдВ`** | 4.5 | `рдХрд╛рд░реНрдпрд╛рд▓рдп` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Angika shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. > **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **32k BPE** | Best compression (3.78x) | | N-gram | **2-gram** | Lowest perplexity (1,763) | | Markov | **Context-4** | Highest predictability (97.9%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) ├Ч 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R┬▓ (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R┬▓ near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R┬▓ > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - ЁЯМР Website: [wikilangs.org](https://wikilangs.org) - ЁЯдЧ Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - ЁЯУК Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - ЁЯСд Author: [Omar Kamali](https://huggingface.co/omarkamali) - ЁЯдЭ Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 16:32:35*