YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
BiGemma3 Base Model
This model is based on google/gemma-3-4b-it using the BiGemma3 architecture.
Model Details
- Base Model: google/gemma-3-4b-it
- Model Type: BiGemma3 (Dense embedding model with pooling)
- Embedding Dimensions: 768, 1536, or 2560 (Matryoshka embeddings)
- Pooling Strategies: cls, last, or mean
Architecture
BiGemma3 extends Gemma3Model to produce dense embeddings suitable for semantic search and retrieval:
- Supports Matryoshka embeddings with dimensions: 768, 1536, or 2560 (full)
- Three pooling strategies: cls (first token), last (last token), or mean (average pooling)
- L2 normalization applied to output embeddings
Usage
import torch
from colpali_engine.models import BiGemma3, BiGemmaProcessor3
# Load model and processor
model = BiGemma3.from_pretrained(
"Nayana-cognitivelab/bigemma",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
)
processor = BiGemmaProcessor3.from_pretrained("Nayana-cognitivelab/bigemma")
# Process inputs
images = [Image.open("doc.png")]
batch_images = processor.process_images(images).to(model.device)
# Generate embeddings
with torch.no_grad():
embeddings = model(**batch_images, pooling_strategy="last", embedding_dim=2560)
print(embeddings.shape) # (1, 2560)
Citation
@misc{colpali2024,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse et al.},
year={2024},
}
- Downloads last month
- 15
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support