Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| 0 |
|
| 1 |
|
| 2 |
|
| 3 |
|
| 4 |
|
| 5 |
|
| 6 |
|
| 7 |
|
| 8 |
|
| 9 |
|
| 10 |
|
| 11 |
|
| 12 |
|
| 13 |
|
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("adriansanz/setfitemotions")
# Run inference
preds = model("Aquest text és Varis")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 4 | 4.2143 | 6 |
| Label | Training Sample Count |
|---|---|
| 0 | 10 |
| 1 | 10 |
| 2 | 10 |
| 3 | 10 |
| 4 | 10 |
| 5 | 10 |
| 6 | 10 |
| 7 | 10 |
| 8 | 10 |
| 9 | 10 |
| 10 | 10 |
| 11 | 10 |
| 12 | 10 |
| 13 | 10 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0009 | 1 | 0.2021 | - |
| 0.0439 | 50 | 0.0263 | - |
| 0.0879 | 100 | 0.0032 | - |
| 0.1318 | 150 | 0.0015 | - |
| 0.1757 | 200 | 0.0012 | - |
| 0.2197 | 250 | 0.0007 | - |
| 0.2636 | 300 | 0.0008 | - |
| 0.3076 | 350 | 0.0006 | - |
| 0.3515 | 400 | 0.0003 | - |
| 0.3954 | 450 | 0.0003 | - |
| 0.4394 | 500 | 0.0004 | - |
| 0.4833 | 550 | 0.0005 | - |
| 0.5272 | 600 | 0.0004 | - |
| 0.5712 | 650 | 0.0005 | - |
| 0.6151 | 700 | 0.0005 | - |
| 0.6591 | 750 | 0.0002 | - |
| 0.7030 | 800 | 0.0001 | - |
| 0.7469 | 850 | 0.0004 | - |
| 0.7909 | 900 | 0.0002 | - |
| 0.8348 | 950 | 0.0003 | - |
| 0.8787 | 1000 | 0.0002 | - |
| 0.9227 | 1050 | 0.0002 | - |
| 0.9666 | 1100 | 0.0003 | - |
| 1.0105 | 1150 | 0.0002 | - |
| 1.0545 | 1200 | 0.0002 | - |
| 1.0984 | 1250 | 0.0002 | - |
| 1.1424 | 1300 | 0.0003 | - |
| 1.1863 | 1350 | 0.0003 | - |
| 1.2302 | 1400 | 0.0001 | - |
| 1.2742 | 1450 | 0.0002 | - |
| 1.3181 | 1500 | 0.0001 | - |
| 1.3620 | 1550 | 0.0001 | - |
| 1.4060 | 1600 | 0.0003 | - |
| 1.4499 | 1650 | 0.0001 | - |
| 1.4938 | 1700 | 0.0001 | - |
| 1.5378 | 1750 | 0.0001 | - |
| 1.5817 | 1800 | 0.0001 | - |
| 1.6257 | 1850 | 0.0001 | - |
| 1.6696 | 1900 | 0.0001 | - |
| 1.7135 | 1950 | 0.0001 | - |
| 1.7575 | 2000 | 0.0002 | - |
| 1.8014 | 2050 | 0.0001 | - |
| 1.8453 | 2100 | 0.0001 | - |
| 1.8893 | 2150 | 0.0002 | - |
| 1.9332 | 2200 | 0.0001 | - |
| 1.9772 | 2250 | 0.0002 | - |
| 2.0211 | 2300 | 0.0001 | - |
| 2.0650 | 2350 | 0.0001 | - |
| 2.1090 | 2400 | 0.0001 | - |
| 2.1529 | 2450 | 0.0001 | - |
| 2.1968 | 2500 | 0.0001 | - |
| 2.2408 | 2550 | 0.0001 | - |
| 2.2847 | 2600 | 0.0 | - |
| 2.3286 | 2650 | 0.0001 | - |
| 2.3726 | 2700 | 0.0001 | - |
| 2.4165 | 2750 | 0.0001 | - |
| 2.4605 | 2800 | 0.0001 | - |
| 2.5044 | 2850 | 0.0001 | - |
| 2.5483 | 2900 | 0.0001 | - |
| 2.5923 | 2950 | 0.0001 | - |
| 2.6362 | 3000 | 0.0001 | - |
| 2.6801 | 3050 | 0.0001 | - |
| 2.7241 | 3100 | 0.0001 | - |
| 2.7680 | 3150 | 0.0001 | - |
| 2.8120 | 3200 | 0.0001 | - |
| 2.8559 | 3250 | 0.0001 | - |
| 2.8998 | 3300 | 0.0001 | - |
| 2.9438 | 3350 | 0.0001 | - |
| 2.9877 | 3400 | 0.0001 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}