Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
The info cannot be fetched for the config 'default' of the dataset.
Error code:   InfoError
Exception:    ReadTimeout
Message:      (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: f0ea794c-281b-44d3-8b79-fc5cfb161465)')
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 223, in compute_first_rows_from_streaming_response
                  info = get_dataset_config_info(path=dataset, config_name=config, token=hf_token)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 268, in get_dataset_config_info
                  builder = load_dataset_builder(
                            ^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1132, in load_dataset_builder
                  dataset_module = dataset_module_factory(
                                   ^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
                  raise e1 from None
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
                  ).get_module()
                    ^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 632, in get_module
                  data_files = DataFilesDict.from_patterns(
                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 689, in from_patterns
                  else DataFilesList.from_patterns(
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 592, in from_patterns
                  origin_metadata = _get_origin_metadata(data_files, download_config=download_config)
                                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 506, in _get_origin_metadata
                  return thread_map(
                         ^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/tqdm/contrib/concurrent.py", line 69, in thread_map
                  return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/tqdm/contrib/concurrent.py", line 51, in _executor_map
                  return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/tqdm/std.py", line 1169, in __iter__
                  for obj in iterable:
                             ^^^^^^^^
                File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 619, in result_iterator
                  yield _result_or_cancel(fs.pop())
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 317, in _result_or_cancel
                  return fut.result(timeout)
                         ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 456, in result
                  return self.__get_result()
                         ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 401, in __get_result
                  raise self._exception
                File "/usr/local/lib/python3.12/concurrent/futures/thread.py", line 59, in run
                  result = self.fn(*self.args, **self.kwargs)
                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 485, in _get_single_origin_metadata
                  resolved_path = fs.resolve_path(data_file)
                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 198, in resolve_path
                  repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision)
                                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 125, in _repo_and_revision_exist
                  self._api.repo_info(
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
                  return fn(*args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2816, in repo_info
                  return method(
                         ^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
                  return fn(*args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2673, in dataset_info
                  r = get_session().get(path, headers=headers, timeout=timeout, params=params)
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 602, in get
                  return self.request("GET", url, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 589, in request
                  resp = self.send(prep, **send_kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 703, in send
                  r = adapter.send(request, **kwargs)
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_http.py", line 96, in send
                  return super().send(request, *args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/requests/adapters.py", line 690, in send
                  raise ReadTimeout(e, request=request)
              requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: f0ea794c-281b-44d3-8b79-fc5cfb161465)')

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: The task_ids "speech-recognition" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, text2text-generation, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation
YAML Metadata Warning: The task_ids "robust-speech-recognition" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, text2text-generation, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation
YAML Metadata Warning: The task_ids "noisy-speech-recognition" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, text2text-generation, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation

Dataset Card for People's Speech

Dataset Summary

The People's Speech Dataset is among the world's largest English speech recognition corpus today that is licensed for academic and commercial usage under CC-BY-SA and CC-BY 4.0. It includes 30,000+ hours of transcribed speech in English languages with a diverse set of speakers. This open dataset is large enough to train speech-to-text systems and crucially is available with a permissive license.

Supported Tasks and Leaderboards

[Needs More Information]

Languages

English

Dataset Structure

Data Instances

{ "id": "gov_DOT_uscourts_DOT_scotus_DOT_19-161/gov_DOT_uscourts_DOT_scotus_DOT_19-161_DOT_2020-03-02_DOT_mp3_00002.flac", "audio": { "path": "gov_DOT_uscourts_DOT_scotus_DOT_19-161/gov_DOT_uscourts_DOT_scotus_DOT_19-161_DOT_2020-03-02_DOT_mp3_00002.flac" "array": array([-6.10351562e-05, ...]), "sampling_rate": 16000 } "duration_ms": 14490, "text": "contends that the suspension clause requires a [...]" }

Data Fields

{ "id": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), "duration_ms": datasets.Value("int32"), "text": datasets.Value("string"), }

Data Splits

We provide the following configurations for the dataset: cc-by-clean, cc-by-dirty, cc-by-sa-clean, cc-by-sa-dirty, and microset. We don't provide splits for any of the configurations.

Dataset Creation

Curation Rationale

See our paper.

Source Data

Initial Data Collection and Normalization

Data was downloaded via the archive.org API. No data inference was done.

Who are the source language producers?

[Needs More Information]

Annotations

Annotation process

No manual annotation is done. We download only source audio with already existing transcripts.

Who are the annotators?

For the test and dev sets, we paid native American English speakers to do transcriptions. We do not know the identities of the transcriptionists for data in the training set. For the training set, we have noticed that some transcriptions are likely to be the output of automatic speech recognition systems.

Personal and Sensitive Information

Several of our sources are legal and government proceedings, spoken histories, speeches, and so on. Given that these were intended as public documents and licensed as such, it is natural that the involved individuals are aware of this.

Considerations for Using the Data

Social Impact of Dataset

The dataset could be used for speech synthesis. However, this requires careful cleaning of the dataset, as background noise is not tolerable for speech synthesis.

The dataset could be used for keyword spotting tasks as well. In particular, this is good use case for the non-English audio in the dataset.

Our sincere hope is that the large breadth of sources our dataset incorporates reduces existing quality of service issues today, like speech recognition system’s poor understanding of non-native English accents. We cannot think of any unfair treatment that come from using this dataset at this time.

Discussion of Biases

Our data is downloaded from archive.org. As such, the data is biased towards whatever users decide to upload there.

Almost all of our data is American accented English.

Other Known Limitations

As of version 1.0, a portion of data in the training, test, and dev sets is poorly aligned. Specifically, some words appear in the transcript, but not the audio, or some words appear in the audio, but not the transcript. We are working on it.

Additional Information

Dataset Curators

[Needs More Information]

Licensing Information

We provide CC-BY and CC-BY-SA subsets of the dataset.

Citation Information

Please cite:

@article{DBLP:journals/corr/abs-2111-09344,
  author    = {Daniel Galvez and
               Greg Diamos and
               Juan Ciro and
               Juan Felipe Cer{\'{o}}n and
               Keith Achorn and
               Anjali Gopi and
               David Kanter and
               Maximilian Lam and
               Mark Mazumder and
               Vijay Janapa Reddi},
  title     = {The People's Speech: {A} Large-Scale Diverse English Speech Recognition
               Dataset for Commercial Usage},
  journal   = {CoRR},
  volume    = {abs/2111.09344},
  year      = {2021},
  url       = {https://arxiv.org/abs/2111.09344},
  eprinttype = {arXiv},
  eprint    = {2111.09344},
  timestamp = {Mon, 22 Nov 2021 16:44:07 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2111-09344.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
Downloads last month
6