speecht5-ngiemboon
This model is a fine-tuned version of microsoft/speecht5_tts on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5662
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 1.4586 | 0.7375 | 500 | 0.7303 |
| 1.2905 | 1.4749 | 1000 | 0.6574 |
| 1.2284 | 2.2124 | 1500 | 0.6263 |
| 1.1975 | 2.9499 | 2000 | 0.6020 |
| 1.1748 | 3.6873 | 2500 | 0.5899 |
| 1.1447 | 4.4248 | 3000 | 0.5836 |
| 1.1359 | 5.1622 | 3500 | 0.5814 |
| 1.1298 | 5.8997 | 4000 | 0.5734 |
| 1.1204 | 6.6372 | 4500 | 0.5719 |
| 1.1073 | 7.3746 | 5000 | 0.5696 |
| 1.1296 | 8.1121 | 5500 | 0.5688 |
| 1.1152 | 8.8496 | 6000 | 0.5667 |
| 1.1067 | 9.5870 | 6500 | 0.5662 |
Framework versions
- Transformers 5.0.0
- Pytorch 2.10.0+cu128
- Datasets 2.18.0
- Tokenizers 0.22.2
- Downloads last month
- 34
Model tree for mimba/speecht5-ngiemboon
Base model
microsoft/speecht5_tts