AI & ML interests

Deep Learning Inference, Deep Learning Model Optimization

Recent Activity

amokrov  updated a collection 10 days ago
Visual Language Models
amokrov  updated a collection 10 days ago
Visual Language Models
amokrov  updated a collection 10 days ago
Visual Language Models
View all activity

Tonic 
posted an update 4 minutes ago
view post
Post
🤔 Who would win ?

- a fully subsidized ai lab
OR
- 3 random students named
kurakurai
?

demo : Tonic/fr-on-device

if you like it give the demo a little star and send a shoutout to : @MaxLSB @jddqd and @GAD-cell for absolutely obliterating the pareto frontier of the french language understanding .
  • 1 reply
·
Tonic 
posted an update 4 days ago
view post
Post
3016
🙋🏻‍♂️hello my lovelies ,

it is with great pleasure i present to you my working one-click deploy 16GB ram completely free huggingface spaces deployment.

repo : Tonic/hugging-claw (use git clone to inspect)
literally the one-click link : Tonic/hugging-claw

you can also run it locally and see for yourself :

docker run -it -p 7860:7860 --platform=linux/amd64 \
-e HF_TOKEN="YOUR_VALUE_HERE" \
-e OPENCLAW_GATEWAY_TRUSTED_PROXIES="YOUR_VALUE_HERE" \
-e OPENCLAW_GATEWAY_PASSWORD="YOUR_VALUE_HERE" \
-e OPENCLAW_CONTROL_UI_ALLOWED_ORIGINS="YOUR_VALUE_HERE" \
registry.hf.space/tonic-hugging-claw:latest


just a few quite minor details i'll take care of but i wanted to share here first
  • 2 replies
·
IlyasMoutawwakil 
posted an update 25 days ago
view post
Post
3019
Transformers v5 just landed! 🚀
It significantly unifies and reduces modeling code across architectures, while opening the door to a whole new class of performance optimizations.

My favorite new feature? 🤔
The new dynamic weight loader + converter. Here’s why 👇

Over the last few months, the core Transformers maintainers built an incredibly fast weight loader, capable of converting tensors on the fly while loading them in parallel threads. This means we’re no longer constrained by how parameters are laid out inside the safetensors weight files.

In practice, this unlocks two big things:
- Much more modular modeling code. You can now clearly see how architectures build on top of each other (DeepSeek v2 → v3, Qwen v2 → v3 → MoE, etc.). This makes shared bottlenecks obvious and lets us optimize the right building blocks once, for all model families.
- Performance optimizations beyond what torch.compile can do alone. torch.compile operates on the computation graph, but it can’t change parameter layouts. With the new loader, we can restructure weights at load time: fusing MoE expert projections, merging attention QKV projections, and enabling more compute-dense kernels that simply weren’t possible before.

Personally, I'm honored to have contributed in this direction, including the work on optimizing MoE implementations and making modeling code more torch-exportable, so these optimizations can be ported cleanly across runtimes.

Overall, Transformers v5 is a strong signal of where the community and industry are converging: Modularity and Performance, without sacrificing Flexibility.

Transformers v5 makes its signature from_pretrained an entrypoint where you can mix and match:
- Parallelism
- Quantization
- Custom kernels
- Flash/Paged attention
- Continuous batching
- ...

Kudos to everyone involved! I highly recommend the:
Release notes: https://github.com/huggingface/transformers/releases/tag/v5.0.0
Blog post: https://huggingface.co/blog/transformers-v5
·
IlyasMoutawwakil 
posted an update 30 days ago
view post
Post
2370
After 2 months of refinement, I'm happy to announce that a lot of Transformers' modeling code is now significantly more torch-compile & export-friendly 🔥

Why it had to be done 👇
PyTorch's Dynamo compiler is increasingly becoming the default interoperability layer for ML systems. Anything that relies on torch.export or torch.compile, from model optimization to cross-framework integrations, benefits directly when models can be captured as a single dynamo-traced graph !

Transformers models are now easier to:
⚙️ Compile end-to-end with torch.compile backends
📦 Export reliably via torch.export and torch.onnx.export
🚀 Deploy to ONNX / ONNX Runtime, Intel Corporation's OpenVINO, NVIDIA AutoDeploy (TRT-LLM), AMD's Quark, Meta's Executorch and more hardware-specific runtimes.

This work aims at unblocking entire TorchDynamo-based toolchains that rely on exporting Transformers across runtimes and accelerators.

We are doubling down on Transformers commitment to be a first-class citizen of the PyTorch ecosystem, more exportable, more optimizable, and easier to deploy everywhere.

There are definitely some edge-cases that we still haven't addressed so don't hesitate to try compiling / exporting your favorite transformers and to open issues / PRs.

PR in the comments ! More updates coming coming soon !
  • 1 reply
·