MPNet base trained on AllNLI triplets
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("rajistics/mpnet-base-all-nli-triplet")
sentences = [
'Yes it did.',
'oh does it sure',
'The puppets eat human.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Triplet
| Metric |
Value |
| cosine_accuracy |
0.8452 |
| dot_accuracy |
0.1526 |
| manhattan_accuracy |
0.842 |
| euclidean_accuracy |
0.8399 |
| max_accuracy |
0.8452 |
Triplet
| Metric |
Value |
| cosine_accuracy |
0.8662 |
| dot_accuracy |
0.1327 |
| manhattan_accuracy |
0.8608 |
| euclidean_accuracy |
0.8635 |
| max_accuracy |
0.8662 |
Training Details
Training Dataset
sentence-transformers/all-nli
Evaluation Dataset
sentence-transformers/all-nli
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
num_train_epochs: 1
warmup_ratio: 0.1
fp16: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
loss |
all-nli-dev_max_accuracy |
all-nli-test_max_accuracy |
| 0 |
0 |
- |
- |
0.6832 |
- |
| 0.016 |
100 |
2.6596 |
1.0454 |
0.7942 |
- |
| 0.032 |
200 |
0.9172 |
0.8283 |
0.8071 |
- |
| 0.048 |
300 |
1.3038 |
0.8209 |
0.8048 |
- |
| 0.064 |
400 |
0.8026 |
0.8679 |
0.8009 |
- |
| 0.08 |
500 |
0.8252 |
0.9687 |
0.7906 |
- |
| 0.096 |
600 |
0.9903 |
1.0263 |
0.7893 |
- |
| 0.112 |
700 |
0.8719 |
1.3540 |
0.7708 |
- |
| 0.128 |
800 |
0.9602 |
1.4494 |
0.7622 |
- |
| 0.144 |
900 |
1.0746 |
1.3507 |
0.7646 |
- |
| 0.16 |
1000 |
1.0095 |
1.4260 |
0.7672 |
- |
| 0.176 |
1100 |
1.1258 |
1.2828 |
0.7661 |
- |
| 0.192 |
1200 |
0.9865 |
1.4121 |
0.7418 |
- |
| 0.208 |
1300 |
0.8064 |
1.4133 |
0.7471 |
- |
| 0.224 |
1400 |
0.8036 |
1.2877 |
0.7631 |
- |
| 0.24 |
1500 |
0.899 |
1.0845 |
0.7764 |
- |
| 0.256 |
1600 |
0.7128 |
1.0439 |
0.7679 |
- |
| 0.272 |
1700 |
0.8902 |
1.2055 |
0.7638 |
- |
| 0.288 |
1800 |
0.8587 |
1.1773 |
0.7641 |
- |
| 0.304 |
1900 |
0.797 |
1.0642 |
0.7898 |
- |
| 0.32 |
2000 |
0.7618 |
1.0628 |
0.8232 |
- |
| 0.336 |
2100 |
0.6756 |
1.1256 |
0.8155 |
- |
| 0.352 |
2200 |
0.6782 |
1.0629 |
0.8382 |
- |
| 0.368 |
2300 |
0.7761 |
1.1455 |
0.8071 |
- |
| 0.384 |
2400 |
0.8032 |
1.0287 |
0.7884 |
- |
| 0.4 |
2500 |
0.7219 |
1.0806 |
0.8323 |
- |
| 0.416 |
2600 |
0.5967 |
0.9803 |
0.8180 |
- |
| 0.432 |
2700 |
0.8474 |
1.3061 |
0.8223 |
- |
| 0.448 |
2800 |
0.9129 |
0.9933 |
0.8136 |
- |
| 0.464 |
2900 |
0.8005 |
0.8897 |
0.8235 |
- |
| 0.48 |
3000 |
0.73 |
0.9185 |
0.8349 |
- |
| 0.496 |
3100 |
0.7637 |
0.9318 |
0.8367 |
- |
| 0.512 |
3200 |
0.5791 |
0.8514 |
0.8452 |
- |
| 0.5123 |
3202 |
- |
- |
- |
0.8662 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}