Pretraining is All You Need for Image-to-Image Translation
Paper
•
2205.12952
•
Published
Stable-Diffusion-Pokemon-ja is a Japanese-specific latent text-to-image diffusion model capable of generating Pokemon images given any text input.
This model was trained by using a powerful text-to-image model, diffusers For more information about our training method, see train_ja_model.py.
Firstly, install our package as follows. This package is modified 🤗's Diffusers library to run Japanese Stable Diffusion.
pip install git+https://github.com/rinnakk/japanese-stable-diffusion
sudo apt-get install git-lfs
git clone https://huggingface.co/svjack/Stable-Diffusion-Pokemon-ja
Run this command to log in with your HF Hub token if you haven't before:
huggingface-cli login
Running the pipeline with the LMSDiscreteScheduler scheduler:
from japanese_stable_diffusion import JapaneseStableDiffusionPipeline
import torch
from torch import autocast
from diffusers import LMSDiscreteScheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012,
beta_schedule="scaled_linear", num_train_timesteps=1000)
#pretrained_model_name_or_path = "jap_model_26000"
#### sudo apt-get install git-lfs
#### git clone https://huggingface.co/svjack/Stable-Diffusion-Pokemon-ja
pretrained_model_name_or_path = "Stable-Diffusion-Pokemon-ja"
pipe = JapaneseStableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path,
scheduler=scheduler, use_auth_token=True)
pipe = pipe.to("cuda")
#### disable safety_checker
pipe.safety_checker = lambda images, clip_input: (images, False)
imgs = pipe("鉢植えの植物を頭に載せた漫画のキャラクター",
num_inference_steps = 100
)
image = imgs.images[0]
image.save("output.png")