MiraTTS ONNX INT4

This is an INT4 quantized ONNX version of YatharthS/MiraTTS, optimized for efficient CPU and GPU inference using ONNX Runtime with the GenAI extension.

Key Benefits

  • ~2x faster inference compared to FP32 ONNX
  • ~15x less memory usage (857MB vs 2.5GB+ for original)
  • CPU-friendly: Runs efficiently on CPU without GPU
  • Same quality: Negligible quality loss from quantization

Model Details

Property Value
Original Model YatharthS/MiraTTS
Quantization INT4 (4-bit weights)
Format ONNX with GenAI extension
Size ~857 MB
Sample Rate 48 kHz

Usage

Installation

pip install onnxruntime-genai torch soundfile

For GPU support:

pip install onnxruntime-genai-cuda torch soundfile

Python API

from huggingface_hub import snapshot_download
from mira.model import MiraTTS
import soundfile as sf

# Download model
model_path = snapshot_download("uetuluk2/MiraTTS-onnx-int4")

# Load model (use device="cuda" for GPU)
tts = MiraTTS(model_path, device="cpu")

# Encode reference audio for voice cloning
context = tts.encode_audio("reference.wav")

# Generate speech
audio = tts.generate("Hello, this is a test!", context)

# Save output
sf.write("output.wav", audio.cpu().numpy(), 48000)

With the MiraTTS-onnx Repository

git clone https://github.com/uetuluk/MiraTTS-onnx
cd MiraTTS-onnx
pip install -e .

# Download model
huggingface-cli download uetuluk2/MiraTTS-onnx-int4 --local-dir ./models/int4

# Run example
python examples/generate_int4.py --text "Hello world!" --reference your_voice.wav

Performance

Tested on various hardware configurations:

Device Generation Speed Memory
CPU (Intel i7) ~0.5x realtime ~1.5 GB RAM
GPU (RTX 3080) ~10x realtime ~1 GB VRAM

Quantization

This model was quantized using onnxruntime-genai with INT4 weight quantization:

python -m onnxruntime_genai.models.builder \
    -m YatharthS/MiraTTS \
    -e cpu \
    -p int4 \
    -o ./mira_onnx_int4

License

This model inherits the CC BY-NC-SA 4.0 license from the original MiraTTS model.

Credits

Downloads last month
72
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for uetuluk2/MiraTTS-onnx-int4

Base model

YatharthS/MiraTTS
Quantized
(2)
this model