anp / README.md
omarkamali's picture
Upload all models and assets for anp (latest)
1517cc8 verified
---
language: anp
language_name: Angika
language_family: indoaryan_central
tags:
- wikilangs
- nlp
- tokenizer
- embeddings
- n-gram
- markov
- wikipedia
- feature-extraction
- sentence-similarity
- tokenization
- n-grams
- markov-chain
- text-mining
- fasttext
- babelvec
- vocabulous
- vocabulary
- monolingual
- family-indoaryan_central
license: mit
library_name: wikilangs
pipeline_tag: text-generation
datasets:
- omarkamali/wikipedia-monthly
dataset_info:
name: wikipedia-monthly
description: Monthly snapshots of Wikipedia articles across 300+ languages
metrics:
- name: best_compression_ratio
type: compression
value: 3.777
- name: best_isotropy
type: isotropy
value: 0.8298
- name: vocabulary_size
type: vocab
value: 0
generated: 2026-01-03
---
# Angika - Wikilangs Models
## Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Angika** Wikipedia data.
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
## ๐Ÿ“‹ Repository Contents
### Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
![Performance Dashboard](visualizations/performance_dashboard.png)
### Analysis and Evaluation
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation)
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation)
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
- [7. Summary & Recommendations](#7-summary--recommendations)
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
- [Visualizations Index](#visualizations-index)
---
## 1. Tokenizer Evaluation
![Tokenizer Compression](visualizations/tokenizer_compression.png)
![Tokenizer Fertility](visualizations/tokenizer_fertility.png)
![Tokenizer OOV](visualizations/tokenizer_oov.png)
![Total Tokens](visualizations/tokenizer_total_tokens.png)
### Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|------------|-------------|---------------|----------|--------------|
| **8k** | 3.298x | 3.30 | 0.1077% | 449,296 |
| **16k** | 3.575x | 3.58 | 0.1168% | 414,503 |
| **32k** | 3.777x ๐Ÿ† | 3.78 | 0.1234% | 392,298 |
### Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
**Sample 1:** `เคธเคพเคงเฅเคฏ เคฐเฅเคช เคธเฅ‘ เค†เค‡เคธเคฒเฅˆเคฃเฅเคก เคฆเฅเคจเคฟเคฏเคพ เค•เฅ‡ เคธเคฌเคธเฅ‡ เคชเฅเคฐเคพเคฝเคจเฅ‹ เคธเค‚เคธเคฆเฅ€เคฏ เคฒเฅ‹เค•เคคเค‚เคคเฅเคฐ เค›เฅ€เค•เฅˆเฅค เคเค•เคฐเคพ เคฎเฅ‘ เค…เคญเฅ€ 6...`
| Vocab | Tokens | Count |
|-------|--------|-------|
| 8k | `โ–เคธเคพ เคงเฅเคฏ โ–เคฐเฅเคช โ–เคธเฅ‘ โ–เค†เค‡เคธเคฒเฅˆเคฃเฅเคก โ–เคฆเฅเคจเคฟเคฏเคพ โ–เค•เฅ‡ โ–เคธเคฌเคธเฅ‡ โ–เคชเฅเคฐเคพ เคฝ ... (+26 more)` | 36 |
| 16k | `โ–เคธเคพ เคงเฅเคฏ โ–เคฐเฅเคช โ–เคธเฅ‘ โ–เค†เค‡เคธเคฒเฅˆเคฃเฅเคก โ–เคฆเฅเคจเคฟเคฏเคพ โ–เค•เฅ‡ โ–เคธเคฌเคธเฅ‡ โ–เคชเฅเคฐเคพ เคฝเคจเฅ‹ ... (+24 more)` | 34 |
| 32k | `โ–เคธเคพเคงเฅเคฏ โ–เคฐเฅเคช โ–เคธเฅ‘ โ–เค†เค‡เคธเคฒเฅˆเคฃเฅเคก โ–เคฆเฅเคจเคฟเคฏเคพ โ–เค•เฅ‡ โ–เคธเคฌเคธเฅ‡ โ–เคชเฅเคฐเคพเคฝเคจเฅ‹ โ–เคธเค‚เคธเคฆเฅ€เคฏ โ–เคฒเฅ‹เค•เคคเค‚เคคเฅเคฐ ... (+22 more)` | 32 |
**Sample 2:** `เคœเคจเคคเคพ เคฆเคฒ เคเค—เฅ‹ เคฐเคพเคทเฅเคŸเฅเคฐเฅ€เคฏ เคฆเคฒ เค›เฅ‡เค•เฅˆเฅค เค‡เคคเคฟเคนเคพเคธ เคเค•เคฐเฅ‹ เคฆเฅ‡เค–เฅŒ เคฌเคพเคนเคฐเฅ€ เค•เคกเคผเฅ€ เคธเค‚เคฆเคฐเฅเคญ`
| Vocab | Tokens | Count |
|-------|--------|-------|
| 8k | `โ–เคœเคจเคคเคพ โ–เคฆเคฒ โ–เคเค—เฅ‹ โ–เคฐเคพเคทเฅเคŸเฅเคฐเฅ€เคฏ โ–เคฆเคฒ โ–เค›เฅ‡เค•เฅˆ เฅค โ–เค‡เคคเคฟเคนเคพเคธ โ–เคเค•เคฐเฅ‹ โ–เคฆเฅ‡เค–เฅŒ ... (+3 more)` | 13 |
| 16k | `โ–เคœเคจเคคเคพ โ–เคฆเคฒ โ–เคเค—เฅ‹ โ–เคฐเคพเคทเฅเคŸเฅเคฐเฅ€เคฏ โ–เคฆเคฒ โ–เค›เฅ‡เค•เฅˆ เฅค โ–เค‡เคคเคฟเคนเคพเคธ โ–เคเค•เคฐเฅ‹ โ–เคฆเฅ‡เค–เฅŒ ... (+3 more)` | 13 |
| 32k | `โ–เคœเคจเคคเคพ โ–เคฆเคฒ โ–เคเค—เฅ‹ โ–เคฐเคพเคทเฅเคŸเฅเคฐเฅ€เคฏ โ–เคฆเคฒ โ–เค›เฅ‡เค•เฅˆ เฅค โ–เค‡เคคเคฟเคนเคพเคธ โ–เคเค•เคฐเฅ‹ โ–เคฆเฅ‡เค–เฅŒ ... (+3 more)` | 13 |
**Sample 3:** `เค•เฅ‹เคจเฅ‹ เคฐเฅ‹เค— เคธเฅ†เค‚ เคฎเคจเฅเคทเฅเคฏ เค•เฅ‡ เคฌเคšเคพเคต เคฒเฅ‡เคฒเฅ€ เคœเฅ‡ เคตเคฟเคงเคฟ เค…เคชเคจเฅˆเคฒเฅŠ เคœเคพเคฏ เค›เฅˆ, เคตเฅ‹เค•เคฐเคพ เคšเคฟเค•เคฟเคคเฅเคธเคพ เค•เคนเคฒเฅŠ เคœเคพเคฏ ...`
| Vocab | Tokens | Count |
|-------|--------|-------|
| 8k | `โ–เค•เฅ‹เคจเฅ‹ โ–เคฐเฅ‹เค— โ–เคธเฅ†เค‚ โ–เคฎเคจเฅเคทเฅเคฏ โ–เค•เฅ‡ โ–เคฌเคš เคพเคต โ–เคฒเฅ‡เคฒเฅ€ โ–เคœเฅ‡ โ–เคตเคฟเคงเคฟ ... (+14 more)` | 24 |
| 16k | `โ–เค•เฅ‹เคจเฅ‹ โ–เคฐเฅ‹เค— โ–เคธเฅ†เค‚ โ–เคฎเคจเฅเคทเฅเคฏ โ–เค•เฅ‡ โ–เคฌเคšเคพเคต โ–เคฒเฅ‡เคฒเฅ€ โ–เคœเฅ‡ โ–เคตเคฟเคงเคฟ โ–เค…เคชเคจ ... (+12 more)` | 22 |
| 32k | `โ–เค•เฅ‹เคจเฅ‹ โ–เคฐเฅ‹เค— โ–เคธเฅ†เค‚ โ–เคฎเคจเฅเคทเฅเคฏ โ–เค•เฅ‡ โ–เคฌเคšเคพเคต โ–เคฒเฅ‡เคฒเฅ€ โ–เคœเฅ‡ โ–เคตเคฟเคงเคฟ โ–เค…เคชเคจเฅˆเคฒเฅŠ ... (+9 more)` | 19 |
### Key Findings
- **Best Compression:** 32k achieves 3.777x compression
- **Lowest UNK Rate:** 8k with 0.1077% unknown tokens
- **Trade-off:** Larger vocabularies improve compression but increase model size
- **Recommendation:** 32k vocabulary provides optimal balance for production use
---
## 2. N-gram Model Evaluation
![N-gram Perplexity](visualizations/ngram_perplexity.png)
![N-gram Unique](visualizations/ngram_unique.png)
![N-gram Coverage](visualizations/ngram_coverage.png)
### Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|--------|---------|------------|---------|----------------|------------------|-------------------|
| **2-gram** | Word | 5,133 | 12.33 | 15,401 | 20.6% | 52.0% |
| **2-gram** | Subword | 1,763 ๐Ÿ† | 10.78 | 18,130 | 37.8% | 73.7% |
| **3-gram** | Word | 4,136 | 12.01 | 14,976 | 21.1% | 59.7% |
| **3-gram** | Subword | 12,510 | 13.61 | 74,071 | 14.6% | 40.2% |
| **4-gram** | Word | 6,638 | 12.70 | 28,729 | 18.3% | 55.5% |
| **4-gram** | Subword | 43,295 | 15.40 | 212,245 | 8.3% | 26.6% |
| **5-gram** | Word | 4,565 | 12.16 | 20,947 | 20.4% | 62.1% |
| **5-gram** | Subword | 74,529 | 16.19 | 271,380 | 5.9% | 20.8% |
### Top 5 N-grams by Size
**2-grams (Word):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `เค•เฅ‡ เคฒเคฟเค` | 1,987 |
| 2 | `เค•เฅ‡ เค…เคจเฅเคธเคพเคฐ` | 1,711 |
| 3 | `เค›เฅˆ เคœเฅ‡` | 1,664 |
| 4 | `เค›เฅˆ เคœเฅ‡เค•เคฐเคพ` | 1,521 |
| 5 | `เค•เฅ‡ เค”เคธเคค` | 1,421 |
**3-grams (Word):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `เค›เฅˆ เคœเฅ‡เค•เคฐเคพ เคฎ` | 1,240 |
| 2 | `เคœเคจเค—เคฃเคจเคพ เค•เฅ‡ เค…เคจเฅเคธเคพเคฐ` | 1,231 |
| 3 | `เค•เฅ‡ เคฐเฅ‚เคช เคฎเฅ‡เค‚` | 796 |
| 4 | `เคชเคฐเคฟเคตเคพเคฐ เคฐเคนเฅˆ เค›เฅˆ` | 789 |
| 5 | `เคฎ เคธเฅเคฅเคฟเคค เคเค—เฅ‹` | 690 |
**4-grams (Word):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `เค›เฅˆ เคœเฅ‡เค•เคฐเคพ เคฎ เค•เฅเคฒ` | 638 |
| 2 | `เค•เฅ‡ เค”เคธเคค เคฒเคฟเค‚เค— เค…เคจเฅเคชเคพเคค` | 559 |
| 3 | `เค›เฅˆ เคœเคจเค—เคฃเคจเคพ เค•เฅ‡ เค…เคจเฅเคธเคพเคฐ` | 535 |
| 4 | `เค•เฅ‡ เคœเคจเค—เคฃเคจเคพ เค•เฅ‡ เค…เคจเฅเคธเคพเคฐ` | 498 |
| 5 | `เค—เคพเคเคต เค›เฅˆ เคœเฅ‡เค•เคฐเคพ เคฎ` | 479 |
**5-grams (Word):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `เค—เคพเคเคต เค›เฅˆ เคœเฅ‡เค•เคฐเคพ เคฎ เค•เฅเคฒ` | 476 |
| 2 | `เค›เฅˆ เค•เฅ‡ เคœเคจเค—เคฃเคจเคพ เค•เฅ‡ เค…เคจเฅเคธเคพเคฐ` | 438 |
| 3 | `0 6 เค†เคฏเฅ เคตเคฐเฅเค— เค•เฅ‡` | 436 |
| 4 | `6 เค†เคฏเฅ เคตเคฐเฅเค— เค•เฅ‡ เคฌเคšเฅเคšเคพ` | 435 |
| 5 | `เค†เคฏเฅ เคตเคฐเฅเค— เค•เฅ‡ เคฌเคšเฅเคšเคพ เค•เฅ‡` | 432 |
**2-grams (Subword):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `เคฐ _` | 44,141 |
| 2 | `_ เค•เฅ‡` | 43,544 |
| 3 | `เค•เฅ‡ _` | 39,889 |
| 4 | `, _` | 27,806 |
| 5 | `เฅค _` | 27,568 |
**3-grams (Subword):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `_ เค•เฅ‡ _` | 37,379 |
| 2 | `_ เคฎเฅ‡เค‚ _` | 14,100 |
| 3 | `_ เค•เฅ€ _` | 9,283 |
| 4 | `_ เค” เคฐ` | 9,137 |
| 5 | `เค” เคฐ _` | 9,133 |
**4-grams (Subword):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `_ เค” เคฐ _` | 9,104 |
| 2 | `_ เคนเฅˆ เฅค _` | 6,415 |
| 3 | `_ เค›เฅˆ เฅค _` | 6,096 |
| 4 | `_ เค เค• _` | 4,687 |
| 5 | `_ เค›เฅˆ , _` | 3,618 |
**5-grams (Subword):**
| Rank | N-gram | Count |
|------|--------|-------|
| 1 | `_ เค›เฅˆ , _ เคœเฅ‡` | 2,233 |
| 2 | `_ เคญเคพ เคฐ เคค _` | 2,072 |
| 3 | `เคคเคพ _ เคนเฅˆ เฅค _` | 2,029 |
| 4 | `_ เค… เคจเฅ เคธเคพ เคฐ` | 2,019 |
| 5 | `_ เค•เฅ‡ _ เคฒเคฟ เค` | 1,986 |
### Key Findings
- **Best Perplexity:** 2-gram (subword) with 1,763
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
- **Coverage:** Top-1000 patterns cover ~21% of corpus
- **Recommendation:** 4-gram or 5-gram for best predictive performance
---
## 3. Markov Chain Evaluation
![Markov Entropy](visualizations/markov_entropy.png)
![Markov Contexts](visualizations/markov_contexts.png)
![Markov Branching](visualizations/markov_branching.png)
### Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
| **1** | Word | 0.8698 | 1.827 | 5.82 | 59,321 | 13.0% |
| **1** | Subword | 0.9730 | 1.963 | 11.48 | 4,665 | 2.7% |
| **2** | Word | 0.2523 | 1.191 | 1.56 | 344,866 | 74.8% |
| **2** | Subword | 0.5491 | 1.463 | 3.85 | 53,547 | 45.1% |
| **3** | Word | 0.0707 | 1.050 | 1.12 | 537,872 | 92.9% |
| **3** | Subword | 0.4976 | 1.412 | 2.68 | 206,241 | 50.2% |
| **4** | Word | 0.0212 ๐Ÿ† | 1.015 | 1.03 | 599,865 | 97.9% |
| **4** | Subword | 0.3012 | 1.232 | 1.72 | 551,827 | 69.9% |
### Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
**Context Size 1:**
1. `เค•เฅ‡ เคฎเคนเคฟเคฎเคพ เคฌเคนเฅเคค เคฅเฅ‹เคกเคผเคพ เคฏเคพ เคเค• เค•เฅเคทเฅ‡เคคเฅเคฐ เค• เคธเคพเคฌเฅเคจ เค•เคพเคฐเค–เคพเคจเฅ‹เค‚ เคฎเฅ‡เค‚ เคนเฅˆ เคชเฅเคฐเฅ‡เคฎเคšเค‚เคฆ เค…เคงเฅเคฏเคพเคชเค• เคซเฅเคฐเคพเค‚เคธเคฟเคธ เคชเฅเคฐเคฅเคฎ`
2. `เคฎเฅ‡เค‚ เค›เฅˆ เคœเฅ‡เค•เคฐเคพ เคฎเฅ…เฅ† เค•เฅเคฒ 650 เคฎเคนเคฟเคฒเคพ เค›เฅˆ เคฆเฅ‡เคตเคจเคพเค—เคฐเฅ€ เคฒเคฟเคชเคฟ เคถเคฌเฅเคฆเคพเคตเคฒเฅ€ เคฒเคฟเคชเคฟ เค•เฅ‡เคฐเฅŒ เค…เคงเคฟเค•เคพเคฐ เคชเฅเคฐเคพเคชเฅเคค เค›เฅˆ`
3. `เค›เฅˆ เค‰เคฆเคพเคนเคฐเคฃเคคเคƒ x11 เคฐเค‚เค—เฅ‹เค‚ เค•เฅ‡ เคฎเฅŒเค–เคฟเค• เคธเค‚เคšเคพเคฐ เคชเฅเคฐเคคเฅ€เค• เคธเคฎเฅ‚เคน เคญเฅ€ เคชเค‚เคšเคตเคŸเฅ€ เคชเฅเคฐเคธเคฟเคฆเฅเคง เคนเฅเค† เค†เคœ เฅงเฅซเฅฆ เคธเฅ‡`
**Context Size 2:**
1. `เค•เฅ‡ เคฒเคฟเค เคฎเคฟเคธเฅเคฐ เคชเคฐ เคตเคฟเคœเคฏ เคชเฅเคฐเคพเคชเฅเคค เค•เคฐเฅˆ เค›เฅ€เคฏเฅˆ เคœเฅ‡ เค•เคฃเฅ‹เคœ เคธเฅ‘ เคญเฅ€ เค…เคงเคฟเค• เค…เคฒเค— เค…เคฒเค— เคฐเฅ‚เคช เคฆเคฟเคฏเคพ`
2. `เค•เฅ‡ เค…เคจเฅเคธเคพเคฐ เคชเคคเฅเคฐเคพเค‚เค— เค—เคพเค‚เคต เค•เฅ‡ เค†เคฌเคพเคฆเฅ€ 105 เค›เฅˆ เคœเฅ‡ เค—เคพเคเคต เค•เฅ‡ เคœเคจเคธเค‚เค–เฅเคฏเคพ เค›เฅˆ เคœเฅ‡เค•เคฐเคพ เคฎ 147 เคชเฅเคฐเฅเคท`
3. `เค›เฅˆ เคœเฅ‡ เค‰เคคเฅเคคเคฐ เคชเฅเคฐเคฆเฅ‡เคถ เคฐเคพเคœเฅเคฏ เคฎเค เคธเฅเคฅเคฟเคค เค›เฅˆ เคฎเคพเคจเคฆเค‚เคก เค•เฅ‡ เค…เคจเฅเคธเคพเคฐ เค•เฅเค‚เคฆเคฐเฅ€ เคธเฅ‹เคจ เค•เฅเคฐเคนเคพ เคนเคฐเคฒเคพ เค•เฅ‡ เค•เฅเคฒ`
**Context Size 3:**
1. `เค›เฅˆ เคœเฅ‡เค•เคฐเคพ เคฎ 118 เคชเฅเคฐเฅเคท เค†เคฐเฅ เคœเคฌเค•เคฟ เคฎเคนเคฟเคฒเคพ เค›เฅˆ เคคเฅ‡เคฒเคฌเคพเคฆเฅเคฐเฅ‹ เค—เคพเค‚เคต เคฎ 0 6 เค†เคฏเฅ เคตเคฐเฅเค— เค•เฅ‡ เคฌเคšเฅเคšเคพ`
2. `เคœเคจเค—เคฃเคจเคพ เค•เฅ‡ เค…เคจเฅเคธเคพเคฐ เคนเคฐเคตเคพเคกเฅ€เคน เค•เฅ‡ เคฌเคพเคฒ เคฒเคฟเค‚เค— เค…เคจเฅเคชเคพเคค 915 เค›เฅˆ เคœเฅ‡ เค‰เคคเฅเคคเคฐ เคชเฅเคฐเคฆเฅ‡เคถ เค•เฅ‡ เคฎเคฟเคฐเฅเคœเคผเคพเคชเฅเคฐ เคœเคฟเคฒเฅ‡ เค•เฅ€ เคฌเฅ‡เคฒเคจ`
3. `เค•เฅ‡ เคฐเฅ‚เคช เคฎเฅ‡เค‚ เคฆเฅ‡เค–เคพ เคœเคพเคคเคพ เคนเฅˆ เค•เคฟเค‚เคคเฅ เคชเคพเคช เค•เฅ‡ เคธเคญเฅ€ เคชเคฐเคฟเคฃเคพเคฎ เคจเคทเฅเคŸ เคจเคนเฅ€เค‚ เคนเฅ‹เคคเฅ‡ เค‰เคธเค•เฅ‡ เคชเคฐเคฟเคฃเคพเคฎ เคฆเฅ‚เคฐ เค•เคฐเคจเฅ‡`
**Context Size 4:**
1. `เค›เฅˆ เคœเฅ‡เค•เคฐเคพ เคฎ เค•เฅเคฒ 72 เคชเฅเคฐเฅเคท เค›เฅˆ เคœเคฌเค•เคฟ 80 เคฎเคนเคฟเคฒเคพ เค›เฅˆ เคœเฅˆเคธเคจเฅ‹ เค•เคฟ เค•เฅ‡ เคœเคจเค—เคฃเคจเคพ เคฎ เคฌเคคเฅˆเคฒเฅ‹ เค—เฅ‡เคฒเฅ‹ เค›เฅˆ`
2. `เค•เฅ‡ เค”เคธเคค เคฒเคฟเค‚เค— เค…เคจเฅเคชเคพเคค 835 เคธ เค•เคฎ เค›เฅˆ`
3. `เค›เฅˆ เคœเคจเค—เคฃเคจเคพ เค•เฅ‡ เค…เคจเฅเคธเคพเคฐ เคธเคฐเฅ‹เค– เค—เคพเค‚เคต เค•เฅ‡ เค†เคฌเคพเคฆเฅ€ 673 เค›เฅ‡เคฒเฅˆ เคœเฅ‡เค•เคฐเคพ เคฎเฅ‘ เคธเฅ‘ 613 เคชเฅเคฐเฅเคท เค†เคฐเฅ‚ 503 เคฎเคนเคฟเคฒเคพ เค›เฅˆ`
### Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
**Context Size 1:**
1. `_(เคฎเฅ‡เคฒ_เค‰เคคเฅเคชเคคเฅเคคเคฟ_เคธเฅ‚เคคเฅเคฐเฅ‹เค‚_เค•เฅ‡_เค•เฅ‡_`
2. `เคฐ_เคนเฅˆเค‚_เคฐเคพเคจเคฐเฅเคœเฅ€_เคธเคฎเฅเคชเคฐเคฟเคธเคฌเคจเคพ_เคฆเฅ‹`
3. `เค•_เคฆเฅŒเคฐเคพเคœเคฒเคกเคผเค•เคˆ_เคธเคพเคฅ_เค•เฅเคฒ_`
**Context Size 2:**
1. `เคฐ_เค•เฅ‡_เค‡เคธ_เค›เฅˆเฅค_เคฎเฅเค†เคตเคฟเคทเฅเค•เคพเคฐ_เคฆเคฟ`
2. `_เค•เฅ‡_เค เฅ€เค•_เคฏเฅŒเค—เคฟเค•_เคฐเค•เฅเคทเคพ_เค†เคตเคพเคธเฅ€_`
3. `เค•เฅ‡_เค…เคงเฅเคฏเคฏเคจ_เคฎเฅ‡เค‚_เคฒเฅˆเคŸเคฟเคจ_เค•เคพ_เคฆเคพเคฐเฅเคถ`
**Context Size 3:**
1. `_เค•เฅ‡_เคญเคพเคˆ_เคฅเฅ‡_เค”เคฐ_เคฎเคพเคจเคพ_เคœเคพเคคเคพ_เคนเฅˆ`
2. `_เคฎเฅ‡เค‚_5%_เค›เฅˆเฅค_เคœเคจเคคเคพเคเคคเฅเคฐเคฟเค•_เคฐเฅ‚เคช_`
3. `_เค•เฅ€_เคœเคพเคคเฅ€_เคนเฅˆเค‚_เคœเฅ‹_เคฒเค—เคจ_เค•เฅ€_เค•เคฟเคคเคพ`
**Context Size 4:**
1. `_เค”เคฐ_เค—เฅˆเคฐ-เคจเฅเคฏเคพเคฏเคฟเค•_เคธเคฆเคจ_เค•เฅ€_เค†เคตเฅƒ`
2. `_เคนเฅˆเฅค_เคตเฅเคฏเคพเคชเค•_เค›เฅˆ_เคคs_เค†เค–เคฐเฅ€_เคธเคพเค‚เคธ`
3. `_เค›เฅˆเฅค_เค‡เคคเคฟเคนเคพเคธ_เค•เฅ‡_เคฌเคพเคฆ_เค‰เคธเค•เฅ‹_เคธ`
### Key Findings
- **Best Predictability:** Context-4 (word) with 97.9% predictability
- **Branching Factor:** Decreases with context size (more deterministic)
- **Memory Trade-off:** Larger contexts require more storage (551,827 contexts)
- **Recommendation:** Context-3 or Context-4 for text generation
---
## 4. Vocabulary Analysis
![Zipf's Law](visualizations/zipf_law.png)
![Top Words](visualizations/top20_words.png)
![Coverage Curve](visualizations/vocab_coverage.png)
### Statistics
| Metric | Value |
|--------|-------|
| Vocabulary Size | 27,495 |
| Total Tokens | 705,736 |
| Mean Frequency | 25.67 |
| Median Frequency | 4 |
| Frequency Std Dev | 313.78 |
### Most Common Words
| Rank | Word | Frequency |
|------|------|-----------|
| 1 | เค•เฅ‡ | 37,476 |
| 2 | เคฎเฅ‡เค‚ | 14,866 |
| 3 | เค›เฅˆ | 13,486 |
| 4 | เคนเฅˆ | 12,172 |
| 5 | เค•เฅ€ | 9,675 |
| 6 | เค”เคฐ | 9,147 |
| 7 | เค•เคพ | 7,600 |
| 8 | เคธเฅ‡ | 7,248 |
| 9 | เค•เฅ‹ | 5,485 |
| 10 | เคนเฅˆเค‚ | 5,201 |
### Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|------|------|-----------|
| 1 | zeros | 2 |
| 2 | ignored | 2 |
| 3 | dmy | 2 |
| 4 | mdy | 2 |
| 5 | paren | 2 |
| 6 | breaking | 2 |
| 7 | inserted | 2 |
| 8 | values | 2 |
| 9 | separator | 2 |
| 10 | days | 2 |
### Zipf's Law Analysis
| Metric | Value |
|--------|-------|
| Zipf Coefficient | 1.1206 |
| Rยฒ (Goodness of Fit) | 0.994934 |
| Adherence Quality | **excellent** |
### Coverage Analysis
| Top N Words | Coverage |
|-------------|----------|
| Top 100 | 39.9% |
| Top 1,000 | 69.2% |
| Top 5,000 | 86.8% |
| Top 10,000 | 92.8% |
### Key Findings
- **Zipf Compliance:** Rยฒ=0.9949 indicates excellent adherence to Zipf's law
- **High Frequency Dominance:** Top 100 words cover 39.9% of corpus
- **Long Tail:** 17,495 words needed for remaining 7.2% coverage
---
## 5. Word Embeddings Evaluation
![Embedding Isotropy](visualizations/embedding_isotropy.png)
![Similarity Matrix](visualizations/embedding_similarity.png)
![t-SNE Words](visualizations/tsne_words.png)
![t-SNE Sentences](visualizations/tsne_sentences.png)
### 5.1 Cross-Lingual Alignment
![Alignment Quality](visualizations/embedding_alignment_quality.png)
![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png)
### 5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|-------|-----------|----------|------------------|---------------|----------------|
| **mono_32d** | 32 | 0.8298 ๐Ÿ† | 0.3551 | N/A | N/A |
| **mono_64d** | 64 | 0.7019 | 0.2957 | N/A | N/A |
| **mono_128d** | 128 | 0.3519 | 0.2719 | N/A | N/A |
| **aligned_32d** | 32 | 0.8298 | 0.3586 | 0.0160 | 0.0940 |
| **aligned_64d** | 64 | 0.7019 | 0.2950 | 0.0180 | 0.1240 |
| **aligned_128d** | 128 | 0.3519 | 0.2673 | 0.0300 | 0.1420 |
### Key Findings
- **Best Isotropy:** mono_32d with 0.8298 (more uniform distribution)
- **Semantic Density:** Average pairwise similarity of 0.3073. Lower values indicate better semantic separation.
- **Alignment Quality:** Aligned models achieve up to 3.0% R@1 in cross-lingual retrieval.
- **Recommendation:** 128d aligned for best cross-lingual performance
---
## 6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
### 6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|--------|-------|----------------|----------------|
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | **1.980** | High formulaic/idiomatic content | - |
### 6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
#### Productive Prefixes
| Prefix | Examples |
|--------|----------|
#### Productive Suffixes
| Suffix | Examples |
|--------|----------|
| `-เฅ‹เค‚` | เคšเค•เฅเคฐเคตเคพเคคเฅ‹เค‚, เค…เคจเฅเค•เฅเคฐเคฎเฅ‹เค‚, เคฎเฅ‹เคนเคฐเฅ‹เค‚ |
### 6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|------|----------|------------------|----------|
| `tion` | 2.65x | 15 contexts | motion, action, edition |
| `atio` | 2.66x | 12 contexts | nations, station, national |
| `stat` | 2.68x | 6 contexts | state, status, statue |
### 6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
*No significant affix co-occurrences detected.*
### 6.5 Recursive Morpheme Segmentation
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
| Word | Suggested Split | Confidence | Stem |
|------|-----------------|------------|------|
| เค…เคตเคฟเคทเฅเค•เคพเคฐเฅ‹เค‚ | **`เค…เคตเคฟเคทเฅเค•เคพเคฐ-เฅ‹เค‚`** | 4.5 | `เค…เคตเคฟเคทเฅเค•เคพเคฐ` |
| เคฐเฅ‚เคชเคพเคจเฅเคคเคฐเคฃเฅ‹เค‚ | **`เคฐเฅ‚เคชเคพเคจเฅเคคเคฐเคฃ-เฅ‹เค‚`** | 4.5 | `เคฐเฅ‚เคชเคพเคจเฅเคคเคฐเคฃ` |
| เคฎเคนเคพเคตเคฟเคฆเฅเคฏเคพเคฒเคฏเฅ‹เค‚ | **`เคฎเคนเคพเคตเคฟเคฆเฅเคฏเคพเคฒเคฏ-เฅ‹เค‚`** | 4.5 | `เคฎเคนเคพเคตเคฟเคฆเฅเคฏเคพเคฒเคฏ` |
| เคฏเฅ‚เคฐเฅ‹เคชเคฟเคฏเคจเฅ‹เค‚ | **`เคฏเฅ‚เคฐเฅ‹เคชเคฟเคฏเคจ-เฅ‹เค‚`** | 4.5 | `เคฏเฅ‚เคฐเฅ‹เคชเคฟเคฏเคจ` |
| เคชเฅเคฐเค•เคพเคถเค•เฅ‹เค‚ | **`เคชเฅเคฐเค•เคพเคถเค•-เฅ‹เค‚`** | 4.5 | `เคชเฅเคฐเค•เคพเคถเค•` |
| เค…เคจเฅเค•เฅเคฐเคฎเฅ‹เค‚ | **`เค…เคจเฅเค•เฅเคฐเคฎ-เฅ‹เค‚`** | 4.5 | `เค…เคจเฅเค•เฅเคฐเคฎ` |
| เคธเคฎเฅเคฎเฅ‡เคฒเคจเฅ‹เค‚ | **`เคธเคฎเฅเคฎเฅ‡เคฒเคจ-เฅ‹เค‚`** | 4.5 | `เคธเคฎเฅเคฎเฅ‡เคฒเคจ` |
| เคธเฅเคฒเฅเคคเคพเคจเฅ‹เค‚ | **`เคธเฅเคฒเฅเคคเคพเคจ-เฅ‹เค‚`** | 4.5 | `เคธเฅเคฒเฅเคคเคพเคจ` |
| เค—เคฃเคฟเคคเคœเฅเคžเฅ‹เค‚ | **`เค—เคฃเคฟเคคเคœเฅเคž-เฅ‹เค‚`** | 4.5 | `เค—เคฃเคฟเคคเคœเฅเคž` |
| เคชเฅเคธเฅเคคเค•เคพเคฒเคฏเฅ‹เค‚ | **`เคชเฅเคธเฅเคคเค•เคพเคฒเคฏ-เฅ‹เค‚`** | 4.5 | `เคชเฅเคธเฅเคคเค•เคพเคฒเคฏ` |
| เคฎเคนเคพเค•เคพเคตเฅเคฏเฅ‹เค‚ | **`เคฎเคนเคพเค•เคพเคตเฅเคฏ-เฅ‹เค‚`** | 4.5 | `เคฎเคนเคพเค•เคพเคตเฅเคฏ` |
| เค—เฅเคฃเคธเฅ‚เคคเฅเคฐเฅ‹เค‚ | **`เค—เฅเคฃเคธเฅ‚เคคเฅเคฐ-เฅ‹เค‚`** | 4.5 | `เค—เฅเคฃเคธเฅ‚เคคเฅเคฐ` |
| เคถเคพเคธเฅเคคเฅเคฐเฅ‹เค‚ | **`เคถเคพเคธเฅเคคเฅเคฐ-เฅ‹เค‚`** | 4.5 | `เคถเคพเคธเฅเคคเฅเคฐ` |
| เคธเค‚เค—เฅเคฐเคนเคพเคฒเคฏเฅ‹เค‚ | **`เคธเค‚เค—เฅเคฐเคนเคพเคฒเคฏ-เฅ‹เค‚`** | 4.5 | `เคธเค‚เค—เฅเคฐเคนเคพเคฒเคฏ` |
| เค•เคพเคฐเฅเคฏเคพเคฒเคฏเฅ‹เค‚ | **`เค•เคพเคฐเฅเคฏเคพเคฒเคฏ-เฅ‹เค‚`** | 4.5 | `เค•เคพเคฐเฅเคฏเคพเคฒเคฏ` |
### 6.6 Linguistic Interpretation
> **Automated Insight:**
The language Angika shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
> **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
---
## 7. Summary & Recommendations
![Performance Dashboard](visualizations/performance_dashboard.png)
### Production Recommendations
| Component | Recommended | Rationale |
|-----------|-------------|-----------|
| Tokenizer | **32k BPE** | Best compression (3.78x) |
| N-gram | **2-gram** | Lowest perplexity (1,763) |
| Markov | **Context-4** | Highest predictability (97.9%) |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
---
## Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
### Tokenizer Metrics
**Compression Ratio**
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
>
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
>
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
**Average Token Length (Fertility)**
> *Definition:* Mean number of characters per token produced by the tokenizer.
>
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
>
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
**Unknown Token Rate (OOV Rate)**
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
>
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
>
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
### N-gram Model Metrics
**Perplexity**
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
>
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
>
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
**Entropy**
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
>
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
>
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
**Coverage (Top-K)**
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams.
>
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
>
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
### Markov Chain Metrics
**Average Entropy**
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
>
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
>
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
**Branching Factor**
> *Definition:* Average number of unique next tokens observed for each context.
>
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
>
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
**Predictability**
> *Definition:* Derived metric: (1 - normalized_entropy) ร— 100%. Indicates how deterministic the model's predictions are.
>
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
>
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
### Vocabulary & Zipf's Law Metrics
**Zipf's Coefficient**
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
>
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
>
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
**Rยฒ (Coefficient of Determination)**
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
>
> *Intuition:* Rยฒ near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
>
> *What to seek:* Rยฒ > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
**Vocabulary Coverage**
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words.
>
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
>
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
### Word Embedding Metrics
**Isotropy**
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
>
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
>
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
**Average Norm**
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space.
>
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
>
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
**Cosine Similarity**
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
>
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
>
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
**t-SNE Visualization**
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
>
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
>
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
### General Interpretation Guidelines
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
### Visualizations Index
| Visualization | Description |
|---------------|-------------|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
---
## About This Project
### Data Source
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages.
### Project
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language.
### Maintainer
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com)
### Citation
If you use these models in your research, please cite:
```bibtex
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
```
### License
MIT License - Free for academic and commercial use.
### Links
- ๐ŸŒ Website: [wikilangs.org](https://wikilangs.org)
- ๐Ÿค— Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
- ๐Ÿ“Š Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
- ๐Ÿ‘ค Author: [Omar Kamali](https://huggingface.co/omarkamali)
- ๐Ÿค Sponsor: [Featherless AI](https://featherless.ai)
---
*Generated by Wikilangs Models Pipeline*
*Report Date: 2026-01-03 16:32:35*