|
|
--- |
|
|
language: anp |
|
|
language_name: Angika |
|
|
language_family: indoaryan_central |
|
|
tags: |
|
|
- wikilangs |
|
|
- nlp |
|
|
- tokenizer |
|
|
- embeddings |
|
|
- n-gram |
|
|
- markov |
|
|
- wikipedia |
|
|
- feature-extraction |
|
|
- sentence-similarity |
|
|
- tokenization |
|
|
- n-grams |
|
|
- markov-chain |
|
|
- text-mining |
|
|
- fasttext |
|
|
- babelvec |
|
|
- vocabulous |
|
|
- vocabulary |
|
|
- monolingual |
|
|
- family-indoaryan_central |
|
|
license: mit |
|
|
library_name: wikilangs |
|
|
pipeline_tag: text-generation |
|
|
datasets: |
|
|
- omarkamali/wikipedia-monthly |
|
|
dataset_info: |
|
|
name: wikipedia-monthly |
|
|
description: Monthly snapshots of Wikipedia articles across 300+ languages |
|
|
metrics: |
|
|
- name: best_compression_ratio |
|
|
type: compression |
|
|
value: 3.777 |
|
|
- name: best_isotropy |
|
|
type: isotropy |
|
|
value: 0.8298 |
|
|
- name: vocabulary_size |
|
|
type: vocab |
|
|
value: 0 |
|
|
generated: 2026-01-03 |
|
|
--- |
|
|
|
|
|
# Angika - Wikilangs Models |
|
|
## Comprehensive Research Report & Full Ablation Study |
|
|
|
|
|
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Angika** Wikipedia data. |
|
|
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. |
|
|
|
|
|
## ๐ Repository Contents |
|
|
|
|
|
### Models & Assets |
|
|
|
|
|
- Tokenizers (8k, 16k, 32k, 64k) |
|
|
- N-gram models (2, 3, 4, 5-gram) |
|
|
- Markov chains (context of 1, 2, 3, 4 and 5) |
|
|
- Subword N-gram and Markov chains |
|
|
- Embeddings in various sizes and dimensions (aligned and unaligned) |
|
|
- Language Vocabulary |
|
|
- Language Statistics |
|
|
|
|
|
 |
|
|
|
|
|
### Analysis and Evaluation |
|
|
|
|
|
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation) |
|
|
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) |
|
|
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation) |
|
|
- [4. Vocabulary Analysis](#4-vocabulary-analysis) |
|
|
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) |
|
|
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) |
|
|
- [7. Summary & Recommendations](#7-summary--recommendations) |
|
|
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) |
|
|
- [Visualizations Index](#visualizations-index) |
|
|
|
|
|
--- |
|
|
## 1. Tokenizer Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |
|
|
|------------|-------------|---------------|----------|--------------| |
|
|
| **8k** | 3.298x | 3.30 | 0.1077% | 449,296 | |
|
|
| **16k** | 3.575x | 3.58 | 0.1168% | 414,503 | |
|
|
| **32k** | 3.777x ๐ | 3.78 | 0.1234% | 392,298 | |
|
|
|
|
|
### Tokenization Examples |
|
|
|
|
|
Below are sample sentences tokenized with each vocabulary size: |
|
|
|
|
|
**Sample 1:** `เคธเคพเคงเฅเคฏ เคฐเฅเคช เคธเฅ เคเคเคธเคฒเฅเคฃเฅเคก เคฆเฅเคจเคฟเคฏเคพ เคเฅ เคธเคฌเคธเฅ เคชเฅเคฐเคพเคฝเคจเฅ เคธเคเคธเคฆเฅเคฏ เคฒเฅเคเคคเคเคคเฅเคฐ เคเฅเคเฅเฅค เคเคเคฐเคพ เคฎเฅ เค
เคญเฅ 6...` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โเคธเคพ เคงเฅเคฏ โเคฐเฅเคช โเคธเฅ โเคเคเคธเคฒเฅเคฃเฅเคก โเคฆเฅเคจเคฟเคฏเคพ โเคเฅ โเคธเคฌเคธเฅ โเคชเฅเคฐเคพ เคฝ ... (+26 more)` | 36 | |
|
|
| 16k | `โเคธเคพ เคงเฅเคฏ โเคฐเฅเคช โเคธเฅ โเคเคเคธเคฒเฅเคฃเฅเคก โเคฆเฅเคจเคฟเคฏเคพ โเคเฅ โเคธเคฌเคธเฅ โเคชเฅเคฐเคพ เคฝเคจเฅ ... (+24 more)` | 34 | |
|
|
| 32k | `โเคธเคพเคงเฅเคฏ โเคฐเฅเคช โเคธเฅ โเคเคเคธเคฒเฅเคฃเฅเคก โเคฆเฅเคจเคฟเคฏเคพ โเคเฅ โเคธเคฌเคธเฅ โเคชเฅเคฐเคพเคฝเคจเฅ โเคธเคเคธเคฆเฅเคฏ โเคฒเฅเคเคคเคเคคเฅเคฐ ... (+22 more)` | 32 | |
|
|
|
|
|
**Sample 2:** `เคเคจเคคเคพ เคฆเคฒ เคเคเฅ เคฐเคพเคทเฅเคเฅเคฐเฅเคฏ เคฆเคฒ เคเฅเคเฅเฅค เคเคคเคฟเคนเคพเคธ เคเคเคฐเฅ เคฆเฅเคเฅ เคฌเคพเคนเคฐเฅ เคเคกเคผเฅ เคธเคเคฆเคฐเฅเคญ` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โเคเคจเคคเคพ โเคฆเคฒ โเคเคเฅ โเคฐเคพเคทเฅเคเฅเคฐเฅเคฏ โเคฆเคฒ โเคเฅเคเฅ เฅค โเคเคคเคฟเคนเคพเคธ โเคเคเคฐเฅ โเคฆเฅเคเฅ ... (+3 more)` | 13 | |
|
|
| 16k | `โเคเคจเคคเคพ โเคฆเคฒ โเคเคเฅ โเคฐเคพเคทเฅเคเฅเคฐเฅเคฏ โเคฆเคฒ โเคเฅเคเฅ เฅค โเคเคคเคฟเคนเคพเคธ โเคเคเคฐเฅ โเคฆเฅเคเฅ ... (+3 more)` | 13 | |
|
|
| 32k | `โเคเคจเคคเคพ โเคฆเคฒ โเคเคเฅ โเคฐเคพเคทเฅเคเฅเคฐเฅเคฏ โเคฆเคฒ โเคเฅเคเฅ เฅค โเคเคคเคฟเคนเคพเคธ โเคเคเคฐเฅ โเคฆเฅเคเฅ ... (+3 more)` | 13 | |
|
|
|
|
|
**Sample 3:** `เคเฅเคจเฅ เคฐเฅเค เคธเฅเค เคฎเคจเฅเคทเฅเคฏ เคเฅ เคฌเคเคพเคต เคฒเฅเคฒเฅ เคเฅ เคตเคฟเคงเคฟ เค
เคชเคจเฅเคฒเฅ เคเคพเคฏ เคเฅ, เคตเฅเคเคฐเคพ เคเคฟเคเคฟเคคเฅเคธเคพ เคเคนเคฒเฅ เคเคพเคฏ ...` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โเคเฅเคจเฅ โเคฐเฅเค โเคธเฅเค โเคฎเคจเฅเคทเฅเคฏ โเคเฅ โเคฌเค เคพเคต โเคฒเฅเคฒเฅ โเคเฅ โเคตเคฟเคงเคฟ ... (+14 more)` | 24 | |
|
|
| 16k | `โเคเฅเคจเฅ โเคฐเฅเค โเคธเฅเค โเคฎเคจเฅเคทเฅเคฏ โเคเฅ โเคฌเคเคพเคต โเคฒเฅเคฒเฅ โเคเฅ โเคตเคฟเคงเคฟ โเค
เคชเคจ ... (+12 more)` | 22 | |
|
|
| 32k | `โเคเฅเคจเฅ โเคฐเฅเค โเคธเฅเค โเคฎเคจเฅเคทเฅเคฏ โเคเฅ โเคฌเคเคพเคต โเคฒเฅเคฒเฅ โเคเฅ โเคตเคฟเคงเคฟ โเค
เคชเคจเฅเคฒเฅ ... (+9 more)` | 19 | |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Compression:** 32k achieves 3.777x compression |
|
|
- **Lowest UNK Rate:** 8k with 0.1077% unknown tokens |
|
|
- **Trade-off:** Larger vocabularies improve compression but increase model size |
|
|
- **Recommendation:** 32k vocabulary provides optimal balance for production use |
|
|
|
|
|
--- |
|
|
## 2. N-gram Model Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |
|
|
|--------|---------|------------|---------|----------------|------------------|-------------------| |
|
|
| **2-gram** | Word | 5,133 | 12.33 | 15,401 | 20.6% | 52.0% | |
|
|
| **2-gram** | Subword | 1,763 ๐ | 10.78 | 18,130 | 37.8% | 73.7% | |
|
|
| **3-gram** | Word | 4,136 | 12.01 | 14,976 | 21.1% | 59.7% | |
|
|
| **3-gram** | Subword | 12,510 | 13.61 | 74,071 | 14.6% | 40.2% | |
|
|
| **4-gram** | Word | 6,638 | 12.70 | 28,729 | 18.3% | 55.5% | |
|
|
| **4-gram** | Subword | 43,295 | 15.40 | 212,245 | 8.3% | 26.6% | |
|
|
| **5-gram** | Word | 4,565 | 12.16 | 20,947 | 20.4% | 62.1% | |
|
|
| **5-gram** | Subword | 74,529 | 16.19 | 271,380 | 5.9% | 20.8% | |
|
|
|
|
|
### Top 5 N-grams by Size |
|
|
|
|
|
**2-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `เคเฅ เคฒเคฟเค` | 1,987 | |
|
|
| 2 | `เคเฅ เค
เคจเฅเคธเคพเคฐ` | 1,711 | |
|
|
| 3 | `เคเฅ เคเฅ` | 1,664 | |
|
|
| 4 | `เคเฅ เคเฅเคเคฐเคพ` | 1,521 | |
|
|
| 5 | `เคเฅ เคเคธเคค` | 1,421 | |
|
|
|
|
|
**3-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `เคเฅ เคเฅเคเคฐเคพ เคฎ` | 1,240 | |
|
|
| 2 | `เคเคจเคเคฃเคจเคพ เคเฅ เค
เคจเฅเคธเคพเคฐ` | 1,231 | |
|
|
| 3 | `เคเฅ เคฐเฅเคช เคฎเฅเค` | 796 | |
|
|
| 4 | `เคชเคฐเคฟเคตเคพเคฐ เคฐเคนเฅ เคเฅ` | 789 | |
|
|
| 5 | `เคฎ เคธเฅเคฅเคฟเคค เคเคเฅ` | 690 | |
|
|
|
|
|
**4-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `เคเฅ เคเฅเคเคฐเคพ เคฎ เคเฅเคฒ` | 638 | |
|
|
| 2 | `เคเฅ เคเคธเคค เคฒเคฟเคเค เค
เคจเฅเคชเคพเคค` | 559 | |
|
|
| 3 | `เคเฅ เคเคจเคเคฃเคจเคพ เคเฅ เค
เคจเฅเคธเคพเคฐ` | 535 | |
|
|
| 4 | `เคเฅ เคเคจเคเคฃเคจเคพ เคเฅ เค
เคจเฅเคธเคพเคฐ` | 498 | |
|
|
| 5 | `เคเคพเคเคต เคเฅ เคเฅเคเคฐเคพ เคฎ` | 479 | |
|
|
|
|
|
**5-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `เคเคพเคเคต เคเฅ เคเฅเคเคฐเคพ เคฎ เคเฅเคฒ` | 476 | |
|
|
| 2 | `เคเฅ เคเฅ เคเคจเคเคฃเคจเคพ เคเฅ เค
เคจเฅเคธเคพเคฐ` | 438 | |
|
|
| 3 | `0 6 เคเคฏเฅ เคตเคฐเฅเค เคเฅ` | 436 | |
|
|
| 4 | `6 เคเคฏเฅ เคตเคฐเฅเค เคเฅ เคฌเคเฅเคเคพ` | 435 | |
|
|
| 5 | `เคเคฏเฅ เคตเคฐเฅเค เคเฅ เคฌเคเฅเคเคพ เคเฅ` | 432 | |
|
|
|
|
|
**2-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `เคฐ _` | 44,141 | |
|
|
| 2 | `_ เคเฅ` | 43,544 | |
|
|
| 3 | `เคเฅ _` | 39,889 | |
|
|
| 4 | `, _` | 27,806 | |
|
|
| 5 | `เฅค _` | 27,568 | |
|
|
|
|
|
**3-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `_ เคเฅ _` | 37,379 | |
|
|
| 2 | `_ เคฎเฅเค _` | 14,100 | |
|
|
| 3 | `_ เคเฅ _` | 9,283 | |
|
|
| 4 | `_ เค เคฐ` | 9,137 | |
|
|
| 5 | `เค เคฐ _` | 9,133 | |
|
|
|
|
|
**4-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `_ เค เคฐ _` | 9,104 | |
|
|
| 2 | `_ เคนเฅ เฅค _` | 6,415 | |
|
|
| 3 | `_ เคเฅ เฅค _` | 6,096 | |
|
|
| 4 | `_ เค เค _` | 4,687 | |
|
|
| 5 | `_ เคเฅ , _` | 3,618 | |
|
|
|
|
|
**5-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `_ เคเฅ , _ เคเฅ` | 2,233 | |
|
|
| 2 | `_ เคญเคพ เคฐ เคค _` | 2,072 | |
|
|
| 3 | `เคคเคพ _ เคนเฅ เฅค _` | 2,029 | |
|
|
| 4 | `_ เค
เคจเฅ เคธเคพ เคฐ` | 2,019 | |
|
|
| 5 | `_ เคเฅ _ เคฒเคฟ เค` | 1,986 | |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Perplexity:** 2-gram (subword) with 1,763 |
|
|
- **Entropy Trend:** Decreases with larger n-grams (more predictable) |
|
|
- **Coverage:** Top-1000 patterns cover ~21% of corpus |
|
|
- **Recommendation:** 4-gram or 5-gram for best predictive performance |
|
|
|
|
|
--- |
|
|
## 3. Markov Chain Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |
|
|
|---------|---------|-------------|------------|------------------|-----------------|----------------| |
|
|
| **1** | Word | 0.8698 | 1.827 | 5.82 | 59,321 | 13.0% | |
|
|
| **1** | Subword | 0.9730 | 1.963 | 11.48 | 4,665 | 2.7% | |
|
|
| **2** | Word | 0.2523 | 1.191 | 1.56 | 344,866 | 74.8% | |
|
|
| **2** | Subword | 0.5491 | 1.463 | 3.85 | 53,547 | 45.1% | |
|
|
| **3** | Word | 0.0707 | 1.050 | 1.12 | 537,872 | 92.9% | |
|
|
| **3** | Subword | 0.4976 | 1.412 | 2.68 | 206,241 | 50.2% | |
|
|
| **4** | Word | 0.0212 ๐ | 1.015 | 1.03 | 599,865 | 97.9% | |
|
|
| **4** | Subword | 0.3012 | 1.232 | 1.72 | 551,827 | 69.9% | |
|
|
|
|
|
### Generated Text Samples (Word-based) |
|
|
|
|
|
Below are text samples generated from each word-based Markov chain model: |
|
|
|
|
|
**Context Size 1:** |
|
|
|
|
|
1. `เคเฅ เคฎเคนเคฟเคฎเคพ เคฌเคนเฅเคค เคฅเฅเคกเคผเคพ เคฏเคพ เคเค เคเฅเคทเฅเคคเฅเคฐ เค เคธเคพเคฌเฅเคจ เคเคพเคฐเคเคพเคจเฅเค เคฎเฅเค เคนเฅ เคชเฅเคฐเฅเคฎเคเคเคฆ เค
เคงเฅเคฏเคพเคชเค เคซเฅเคฐเคพเคเคธเคฟเคธ เคชเฅเคฐเคฅเคฎ` |
|
|
2. `เคฎเฅเค เคเฅ เคเฅเคเคฐเคพ เคฎเฅ
เฅ เคเฅเคฒ 650 เคฎเคนเคฟเคฒเคพ เคเฅ เคฆเฅเคตเคจเคพเคเคฐเฅ เคฒเคฟเคชเคฟ เคถเคฌเฅเคฆเคพเคตเคฒเฅ เคฒเคฟเคชเคฟ เคเฅเคฐเฅ เค
เคงเคฟเคเคพเคฐ เคชเฅเคฐเคพเคชเฅเคค เคเฅ` |
|
|
3. `เคเฅ เคเคฆเคพเคนเคฐเคฃเคคเค x11 เคฐเคเคเฅเค เคเฅ เคฎเฅเคเคฟเค เคธเคเคเคพเคฐ เคชเฅเคฐเคคเฅเค เคธเคฎเฅเคน เคญเฅ เคชเคเคเคตเคเฅ เคชเฅเคฐเคธเคฟเคฆเฅเคง เคนเฅเค เคเค เฅงเฅซเฅฆ เคธเฅ` |
|
|
|
|
|
**Context Size 2:** |
|
|
|
|
|
1. `เคเฅ เคฒเคฟเค เคฎเคฟเคธเฅเคฐ เคชเคฐ เคตเคฟเคเคฏ เคชเฅเคฐเคพเคชเฅเคค เคเคฐเฅ เคเฅเคฏเฅ เคเฅ เคเคฃเฅเค เคธเฅ เคญเฅ เค
เคงเคฟเค เค
เคฒเค เค
เคฒเค เคฐเฅเคช เคฆเคฟเคฏเคพ` |
|
|
2. `เคเฅ เค
เคจเฅเคธเคพเคฐ เคชเคคเฅเคฐเคพเคเค เคเคพเคเคต เคเฅ เคเคฌเคพเคฆเฅ 105 เคเฅ เคเฅ เคเคพเคเคต เคเฅ เคเคจเคธเคเคเฅเคฏเคพ เคเฅ เคเฅเคเคฐเคพ เคฎ 147 เคชเฅเคฐเฅเคท` |
|
|
3. `เคเฅ เคเฅ เคเคคเฅเคคเคฐ เคชเฅเคฐเคฆเฅเคถ เคฐเคพเคเฅเคฏ เคฎเค เคธเฅเคฅเคฟเคค เคเฅ เคฎเคพเคจเคฆเคเคก เคเฅ เค
เคจเฅเคธเคพเคฐ เคเฅเคเคฆเคฐเฅ เคธเฅเคจ เคเฅเคฐเคนเคพ เคนเคฐเคฒเคพ เคเฅ เคเฅเคฒ` |
|
|
|
|
|
**Context Size 3:** |
|
|
|
|
|
1. `เคเฅ เคเฅเคเคฐเคพ เคฎ 118 เคชเฅเคฐเฅเคท เคเคฐเฅ เคเคฌเคเคฟ เคฎเคนเคฟเคฒเคพ เคเฅ เคคเฅเคฒเคฌเคพเคฆเฅเคฐเฅ เคเคพเคเคต เคฎ 0 6 เคเคฏเฅ เคตเคฐเฅเค เคเฅ เคฌเคเฅเคเคพ` |
|
|
2. `เคเคจเคเคฃเคจเคพ เคเฅ เค
เคจเฅเคธเคพเคฐ เคนเคฐเคตเคพเคกเฅเคน เคเฅ เคฌเคพเคฒ เคฒเคฟเคเค เค
เคจเฅเคชเคพเคค 915 เคเฅ เคเฅ เคเคคเฅเคคเคฐ เคชเฅเคฐเคฆเฅเคถ เคเฅ เคฎเคฟเคฐเฅเคเคผเคพเคชเฅเคฐ เคเคฟเคฒเฅ เคเฅ เคฌเฅเคฒเคจ` |
|
|
3. `เคเฅ เคฐเฅเคช เคฎเฅเค เคฆเฅเคเคพ เคเคพเคคเคพ เคนเฅ เคเคฟเคเคคเฅ เคชเคพเคช เคเฅ เคธเคญเฅ เคชเคฐเคฟเคฃเคพเคฎ เคจเคทเฅเค เคจเคนเฅเค เคนเฅเคคเฅ เคเคธเคเฅ เคชเคฐเคฟเคฃเคพเคฎ เคฆเฅเคฐ เคเคฐเคจเฅ` |
|
|
|
|
|
**Context Size 4:** |
|
|
|
|
|
1. `เคเฅ เคเฅเคเคฐเคพ เคฎ เคเฅเคฒ 72 เคชเฅเคฐเฅเคท เคเฅ เคเคฌเคเคฟ 80 เคฎเคนเคฟเคฒเคพ เคเฅ เคเฅเคธเคจเฅ เคเคฟ เคเฅ เคเคจเคเคฃเคจเคพ เคฎ เคฌเคคเฅเคฒเฅ เคเฅเคฒเฅ เคเฅ` |
|
|
2. `เคเฅ เคเคธเคค เคฒเคฟเคเค เค
เคจเฅเคชเคพเคค 835 เคธ เคเคฎ เคเฅ` |
|
|
3. `เคเฅ เคเคจเคเคฃเคจเคพ เคเฅ เค
เคจเฅเคธเคพเคฐ เคธเคฐเฅเค เคเคพเคเคต เคเฅ เคเคฌเคพเคฆเฅ 673 เคเฅเคฒเฅ เคเฅเคเคฐเคพ เคฎเฅ เคธเฅ 613 เคชเฅเคฐเฅเคท เคเคฐเฅ 503 เคฎเคนเคฟเคฒเคพ เคเฅ` |
|
|
|
|
|
|
|
|
### Generated Text Samples (Subword-based) |
|
|
|
|
|
Below are text samples generated from each subword-based Markov chain model: |
|
|
|
|
|
**Context Size 1:** |
|
|
|
|
|
1. `_(เคฎเฅเคฒ_เคเคคเฅเคชเคคเฅเคคเคฟ_เคธเฅเคคเฅเคฐเฅเค_เคเฅ_เคเฅ_` |
|
|
2. `เคฐ_เคนเฅเค_เคฐเคพเคจเคฐเฅเคเฅ_เคธเคฎเฅเคชเคฐเคฟเคธเคฌเคจเคพ_เคฆเฅ` |
|
|
3. `เค_เคฆเฅเคฐเคพเคเคฒเคกเคผเคเค_เคธเคพเคฅ_เคเฅเคฒ_` |
|
|
|
|
|
**Context Size 2:** |
|
|
|
|
|
1. `เคฐ_เคเฅ_เคเคธ_เคเฅเฅค_เคฎเฅเคเคตเคฟเคทเฅเคเคพเคฐ_เคฆเคฟ` |
|
|
2. `_เคเฅ_เค เฅเค_เคฏเฅเคเคฟเค_เคฐเคเฅเคทเคพ_เคเคตเคพเคธเฅ_` |
|
|
3. `เคเฅ_เค
เคงเฅเคฏเคฏเคจ_เคฎเฅเค_เคฒเฅเคเคฟเคจ_เคเคพ_เคฆเคพเคฐเฅเคถ` |
|
|
|
|
|
**Context Size 3:** |
|
|
|
|
|
1. `_เคเฅ_เคญเคพเค_เคฅเฅ_เคเคฐ_เคฎเคพเคจเคพ_เคเคพเคคเคพ_เคนเฅ` |
|
|
2. `_เคฎเฅเค_5%_เคเฅเฅค_เคเคจเคคเคพเคเคคเฅเคฐเคฟเค_เคฐเฅเคช_` |
|
|
3. `_เคเฅ_เคเคพเคคเฅ_เคนเฅเค_เคเฅ_เคฒเคเคจ_เคเฅ_เคเคฟเคคเคพ` |
|
|
|
|
|
**Context Size 4:** |
|
|
|
|
|
1. `_เคเคฐ_เคเฅเคฐ-เคจเฅเคฏเคพเคฏเคฟเค_เคธเคฆเคจ_เคเฅ_เคเคตเฅ` |
|
|
2. `_เคนเฅเฅค_เคตเฅเคฏเคพเคชเค_เคเฅ_เคคs_เคเคเคฐเฅ_เคธเคพเคเคธ` |
|
|
3. `_เคเฅเฅค_เคเคคเคฟเคนเคพเคธ_เคเฅ_เคฌเคพเคฆ_เคเคธเคเฅ_เคธ` |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Predictability:** Context-4 (word) with 97.9% predictability |
|
|
- **Branching Factor:** Decreases with context size (more deterministic) |
|
|
- **Memory Trade-off:** Larger contexts require more storage (551,827 contexts) |
|
|
- **Recommendation:** Context-3 or Context-4 for text generation |
|
|
|
|
|
--- |
|
|
## 4. Vocabulary Analysis |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Statistics |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Vocabulary Size | 27,495 | |
|
|
| Total Tokens | 705,736 | |
|
|
| Mean Frequency | 25.67 | |
|
|
| Median Frequency | 4 | |
|
|
| Frequency Std Dev | 313.78 | |
|
|
|
|
|
### Most Common Words |
|
|
|
|
|
| Rank | Word | Frequency | |
|
|
|------|------|-----------| |
|
|
| 1 | เคเฅ | 37,476 | |
|
|
| 2 | เคฎเฅเค | 14,866 | |
|
|
| 3 | เคเฅ | 13,486 | |
|
|
| 4 | เคนเฅ | 12,172 | |
|
|
| 5 | เคเฅ | 9,675 | |
|
|
| 6 | เคเคฐ | 9,147 | |
|
|
| 7 | เคเคพ | 7,600 | |
|
|
| 8 | เคธเฅ | 7,248 | |
|
|
| 9 | เคเฅ | 5,485 | |
|
|
| 10 | เคนเฅเค | 5,201 | |
|
|
|
|
|
### Least Common Words (from vocabulary) |
|
|
|
|
|
| Rank | Word | Frequency | |
|
|
|------|------|-----------| |
|
|
| 1 | zeros | 2 | |
|
|
| 2 | ignored | 2 | |
|
|
| 3 | dmy | 2 | |
|
|
| 4 | mdy | 2 | |
|
|
| 5 | paren | 2 | |
|
|
| 6 | breaking | 2 | |
|
|
| 7 | inserted | 2 | |
|
|
| 8 | values | 2 | |
|
|
| 9 | separator | 2 | |
|
|
| 10 | days | 2 | |
|
|
|
|
|
### Zipf's Law Analysis |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Zipf Coefficient | 1.1206 | |
|
|
| Rยฒ (Goodness of Fit) | 0.994934 | |
|
|
| Adherence Quality | **excellent** | |
|
|
|
|
|
### Coverage Analysis |
|
|
|
|
|
| Top N Words | Coverage | |
|
|
|-------------|----------| |
|
|
| Top 100 | 39.9% | |
|
|
| Top 1,000 | 69.2% | |
|
|
| Top 5,000 | 86.8% | |
|
|
| Top 10,000 | 92.8% | |
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Zipf Compliance:** Rยฒ=0.9949 indicates excellent adherence to Zipf's law |
|
|
- **High Frequency Dominance:** Top 100 words cover 39.9% of corpus |
|
|
- **Long Tail:** 17,495 words needed for remaining 7.2% coverage |
|
|
|
|
|
--- |
|
|
## 5. Word Embeddings Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
### 5.1 Cross-Lingual Alignment |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
### 5.2 Model Comparison |
|
|
|
|
|
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |
|
|
|-------|-----------|----------|------------------|---------------|----------------| |
|
|
| **mono_32d** | 32 | 0.8298 ๐ | 0.3551 | N/A | N/A | |
|
|
| **mono_64d** | 64 | 0.7019 | 0.2957 | N/A | N/A | |
|
|
| **mono_128d** | 128 | 0.3519 | 0.2719 | N/A | N/A | |
|
|
| **aligned_32d** | 32 | 0.8298 | 0.3586 | 0.0160 | 0.0940 | |
|
|
| **aligned_64d** | 64 | 0.7019 | 0.2950 | 0.0180 | 0.1240 | |
|
|
| **aligned_128d** | 128 | 0.3519 | 0.2673 | 0.0300 | 0.1420 | |
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Isotropy:** mono_32d with 0.8298 (more uniform distribution) |
|
|
- **Semantic Density:** Average pairwise similarity of 0.3073. Lower values indicate better semantic separation. |
|
|
- **Alignment Quality:** Aligned models achieve up to 3.0% R@1 in cross-lingual retrieval. |
|
|
- **Recommendation:** 128d aligned for best cross-lingual performance |
|
|
|
|
|
--- |
|
|
## 6. Morphological Analysis (Experimental) |
|
|
|
|
|
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. |
|
|
|
|
|
### 6.1 Productivity & Complexity |
|
|
|
|
|
| Metric | Value | Interpretation | Recommendation | |
|
|
|--------|-------|----------------|----------------| |
|
|
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis | |
|
|
| Idiomaticity Gap | **1.980** | High formulaic/idiomatic content | - | |
|
|
|
|
|
### 6.2 Affix Inventory (Productive Units) |
|
|
|
|
|
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. |
|
|
|
|
|
#### Productive Prefixes |
|
|
| Prefix | Examples | |
|
|
|--------|----------| |
|
|
|
|
|
#### Productive Suffixes |
|
|
| Suffix | Examples | |
|
|
|--------|----------| |
|
|
| `-เฅเค` | เคเคเฅเคฐเคตเคพเคคเฅเค, เค
เคจเฅเคเฅเคฐเคฎเฅเค, เคฎเฅเคนเคฐเฅเค | |
|
|
|
|
|
### 6.3 Bound Stems (Lexical Roots) |
|
|
|
|
|
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. |
|
|
|
|
|
| Stem | Cohesion | Substitutability | Examples | |
|
|
|------|----------|------------------|----------| |
|
|
| `tion` | 2.65x | 15 contexts | motion, action, edition | |
|
|
| `atio` | 2.66x | 12 contexts | nations, station, national | |
|
|
| `stat` | 2.68x | 6 contexts | state, status, statue | |
|
|
|
|
|
### 6.4 Affix Compatibility (Co-occurrence) |
|
|
|
|
|
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. |
|
|
|
|
|
*No significant affix co-occurrences detected.* |
|
|
|
|
|
|
|
|
### 6.5 Recursive Morpheme Segmentation |
|
|
|
|
|
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). |
|
|
|
|
|
| Word | Suggested Split | Confidence | Stem | |
|
|
|------|-----------------|------------|------| |
|
|
| เค
เคตเคฟเคทเฅเคเคพเคฐเฅเค | **`เค
เคตเคฟเคทเฅเคเคพเคฐ-เฅเค`** | 4.5 | `เค
เคตเคฟเคทเฅเคเคพเคฐ` | |
|
|
| เคฐเฅเคชเคพเคจเฅเคคเคฐเคฃเฅเค | **`เคฐเฅเคชเคพเคจเฅเคคเคฐเคฃ-เฅเค`** | 4.5 | `เคฐเฅเคชเคพเคจเฅเคคเคฐเคฃ` | |
|
|
| เคฎเคนเคพเคตเคฟเคฆเฅเคฏเคพเคฒเคฏเฅเค | **`เคฎเคนเคพเคตเคฟเคฆเฅเคฏเคพเคฒเคฏ-เฅเค`** | 4.5 | `เคฎเคนเคพเคตเคฟเคฆเฅเคฏเคพเคฒเคฏ` | |
|
|
| เคฏเฅเคฐเฅเคชเคฟเคฏเคจเฅเค | **`เคฏเฅเคฐเฅเคชเคฟเคฏเคจ-เฅเค`** | 4.5 | `เคฏเฅเคฐเฅเคชเคฟเคฏเคจ` | |
|
|
| เคชเฅเคฐเคเคพเคถเคเฅเค | **`เคชเฅเคฐเคเคพเคถเค-เฅเค`** | 4.5 | `เคชเฅเคฐเคเคพเคถเค` | |
|
|
| เค
เคจเฅเคเฅเคฐเคฎเฅเค | **`เค
เคจเฅเคเฅเคฐเคฎ-เฅเค`** | 4.5 | `เค
เคจเฅเคเฅเคฐเคฎ` | |
|
|
| เคธเคฎเฅเคฎเฅเคฒเคจเฅเค | **`เคธเคฎเฅเคฎเฅเคฒเคจ-เฅเค`** | 4.5 | `เคธเคฎเฅเคฎเฅเคฒเคจ` | |
|
|
| เคธเฅเคฒเฅเคคเคพเคจเฅเค | **`เคธเฅเคฒเฅเคคเคพเคจ-เฅเค`** | 4.5 | `เคธเฅเคฒเฅเคคเคพเคจ` | |
|
|
| เคเคฃเคฟเคคเคเฅเคเฅเค | **`เคเคฃเคฟเคคเคเฅเค-เฅเค`** | 4.5 | `เคเคฃเคฟเคคเคเฅเค` | |
|
|
| เคชเฅเคธเฅเคคเคเคพเคฒเคฏเฅเค | **`เคชเฅเคธเฅเคคเคเคพเคฒเคฏ-เฅเค`** | 4.5 | `เคชเฅเคธเฅเคคเคเคพเคฒเคฏ` | |
|
|
| เคฎเคนเคพเคเคพเคตเฅเคฏเฅเค | **`เคฎเคนเคพเคเคพเคตเฅเคฏ-เฅเค`** | 4.5 | `เคฎเคนเคพเคเคพเคตเฅเคฏ` | |
|
|
| เคเฅเคฃเคธเฅเคคเฅเคฐเฅเค | **`เคเฅเคฃเคธเฅเคคเฅเคฐ-เฅเค`** | 4.5 | `เคเฅเคฃเคธเฅเคคเฅเคฐ` | |
|
|
| เคถเคพเคธเฅเคคเฅเคฐเฅเค | **`เคถเคพเคธเฅเคคเฅเคฐ-เฅเค`** | 4.5 | `เคถเคพเคธเฅเคคเฅเคฐ` | |
|
|
| เคธเคเคเฅเคฐเคนเคพเคฒเคฏเฅเค | **`เคธเคเคเฅเคฐเคนเคพเคฒเคฏ-เฅเค`** | 4.5 | `เคธเคเคเฅเคฐเคนเคพเคฒเคฏ` | |
|
|
| เคเคพเคฐเฅเคฏเคพเคฒเคฏเฅเค | **`เคเคพเคฐเฅเคฏเคพเคฒเคฏ-เฅเค`** | 4.5 | `เคเคพเคฐเฅเคฏเคพเคฒเคฏ` | |
|
|
|
|
|
### 6.6 Linguistic Interpretation |
|
|
|
|
|
> **Automated Insight:** |
|
|
The language Angika shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. |
|
|
|
|
|
> **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. |
|
|
|
|
|
--- |
|
|
## 7. Summary & Recommendations |
|
|
|
|
|
 |
|
|
|
|
|
### Production Recommendations |
|
|
|
|
|
| Component | Recommended | Rationale | |
|
|
|-----------|-------------|-----------| |
|
|
| Tokenizer | **32k BPE** | Best compression (3.78x) | |
|
|
| N-gram | **2-gram** | Lowest perplexity (1,763) | |
|
|
| Markov | **Context-4** | Highest predictability (97.9%) | |
|
|
| Embeddings | **100d** | Balanced semantic capture and isotropy | |
|
|
|
|
|
|
|
|
--- |
|
|
## Appendix: Metrics Glossary & Interpretation Guide |
|
|
|
|
|
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. |
|
|
|
|
|
### Tokenizer Metrics |
|
|
|
|
|
**Compression Ratio** |
|
|
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. |
|
|
> |
|
|
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. |
|
|
> |
|
|
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. |
|
|
|
|
|
**Average Token Length (Fertility)** |
|
|
> *Definition:* Mean number of characters per token produced by the tokenizer. |
|
|
> |
|
|
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. |
|
|
> |
|
|
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. |
|
|
|
|
|
**Unknown Token Rate (OOV Rate)** |
|
|
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. |
|
|
> |
|
|
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. |
|
|
> |
|
|
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. |
|
|
|
|
|
### N-gram Model Metrics |
|
|
|
|
|
**Perplexity** |
|
|
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. |
|
|
> |
|
|
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. |
|
|
> |
|
|
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. |
|
|
|
|
|
**Entropy** |
|
|
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. |
|
|
> |
|
|
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. |
|
|
> |
|
|
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. |
|
|
|
|
|
**Coverage (Top-K)** |
|
|
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. |
|
|
> |
|
|
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. |
|
|
> |
|
|
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. |
|
|
|
|
|
### Markov Chain Metrics |
|
|
|
|
|
**Average Entropy** |
|
|
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. |
|
|
> |
|
|
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). |
|
|
> |
|
|
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. |
|
|
|
|
|
**Branching Factor** |
|
|
> *Definition:* Average number of unique next tokens observed for each context. |
|
|
> |
|
|
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). |
|
|
> |
|
|
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. |
|
|
|
|
|
**Predictability** |
|
|
> *Definition:* Derived metric: (1 - normalized_entropy) ร 100%. Indicates how deterministic the model's predictions are. |
|
|
> |
|
|
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. |
|
|
> |
|
|
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. |
|
|
|
|
|
### Vocabulary & Zipf's Law Metrics |
|
|
|
|
|
**Zipf's Coefficient** |
|
|
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. |
|
|
> |
|
|
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. |
|
|
> |
|
|
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. |
|
|
|
|
|
**Rยฒ (Coefficient of Determination)** |
|
|
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. |
|
|
> |
|
|
> *Intuition:* Rยฒ near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. |
|
|
> |
|
|
> *What to seek:* Rยฒ > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. |
|
|
|
|
|
**Vocabulary Coverage** |
|
|
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. |
|
|
> |
|
|
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. |
|
|
> |
|
|
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. |
|
|
|
|
|
### Word Embedding Metrics |
|
|
|
|
|
**Isotropy** |
|
|
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. |
|
|
> |
|
|
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. |
|
|
> |
|
|
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. |
|
|
|
|
|
**Average Norm** |
|
|
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. |
|
|
> |
|
|
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. |
|
|
> |
|
|
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). |
|
|
|
|
|
**Cosine Similarity** |
|
|
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). |
|
|
> |
|
|
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. |
|
|
> |
|
|
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. |
|
|
|
|
|
**t-SNE Visualization** |
|
|
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. |
|
|
> |
|
|
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. |
|
|
> |
|
|
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. |
|
|
|
|
|
### General Interpretation Guidelines |
|
|
|
|
|
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). |
|
|
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). |
|
|
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. |
|
|
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. |
|
|
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. |
|
|
|
|
|
|
|
|
### Visualizations Index |
|
|
|
|
|
| Visualization | Description | |
|
|
|---------------|-------------| |
|
|
| Tokenizer Compression | Compression ratios by vocabulary size | |
|
|
| Tokenizer Fertility | Average token length by vocabulary | |
|
|
| Tokenizer OOV | Unknown token rates | |
|
|
| Tokenizer Total Tokens | Total tokens by vocabulary | |
|
|
| N-gram Perplexity | Perplexity by n-gram size | |
|
|
| N-gram Entropy | Entropy by n-gram size | |
|
|
| N-gram Coverage | Top pattern coverage | |
|
|
| N-gram Unique | Unique n-gram counts | |
|
|
| Markov Entropy | Entropy by context size | |
|
|
| Markov Branching | Branching factor by context | |
|
|
| Markov Contexts | Unique context counts | |
|
|
| Zipf's Law | Frequency-rank distribution with fit | |
|
|
| Vocab Frequency | Word frequency distribution | |
|
|
| Top 20 Words | Most frequent words | |
|
|
| Vocab Coverage | Cumulative coverage curve | |
|
|
| Embedding Isotropy | Vector space uniformity | |
|
|
| Embedding Norms | Vector magnitude distribution | |
|
|
| Embedding Similarity | Word similarity heatmap | |
|
|
| Nearest Neighbors | Similar words for key terms | |
|
|
| t-SNE Words | 2D word embedding visualization | |
|
|
| t-SNE Sentences | 2D sentence embedding visualization | |
|
|
| Position Encoding | Encoding method comparison | |
|
|
| Model Sizes | Storage requirements | |
|
|
| Performance Dashboard | Comprehensive performance overview | |
|
|
|
|
|
--- |
|
|
## About This Project |
|
|
|
|
|
### Data Source |
|
|
|
|
|
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. |
|
|
|
|
|
### Project |
|
|
|
|
|
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. |
|
|
|
|
|
### Maintainer |
|
|
|
|
|
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) |
|
|
|
|
|
### Citation |
|
|
|
|
|
If you use these models in your research, please cite: |
|
|
|
|
|
```bibtex |
|
|
@misc{wikilangs2025, |
|
|
author = {Kamali, Omar}, |
|
|
title = {Wikilangs: Open NLP Models for Wikipedia Languages}, |
|
|
year = {2025}, |
|
|
doi = {10.5281/zenodo.18073153}, |
|
|
publisher = {Zenodo}, |
|
|
url = {https://huggingface.co/wikilangs} |
|
|
institution = {Omneity Labs} |
|
|
} |
|
|
``` |
|
|
|
|
|
### License |
|
|
|
|
|
MIT License - Free for academic and commercial use. |
|
|
|
|
|
### Links |
|
|
|
|
|
- ๐ Website: [wikilangs.org](https://wikilangs.org) |
|
|
- ๐ค Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) |
|
|
- ๐ Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) |
|
|
- ๐ค Author: [Omar Kamali](https://huggingface.co/omarkamali) |
|
|
- ๐ค Sponsor: [Featherless AI](https://featherless.ai) |
|
|
--- |
|
|
*Generated by Wikilangs Models Pipeline* |
|
|
|
|
|
*Report Date: 2026-01-03 16:32:35* |
|
|
|